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Foreword

In 2023 I released a phone-formatted short in-
troduction to deep learning, and since then it
appeared to me that many AI practitioners with
a background in programming and software de-
velopment are frustrated by their lack of a math-
ematical background adequate to navigate the
literature on the topic.

The required knowledge in mathematics for
Deep Learning is quite diverse, spanning top-
ics from linear algebra to differential calculus
and probabilities. While most computer science
professionals have been exposed to these topics
during their studies, they often forgot most of it
due to a lack of practice.

This volume is an attempt at providing a com-
panion book that covers the mathematical back-
ground necessary to understand the motivation,
formalization and properties of deep learning
technologies.
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It should be seen as a compact refresher that cov-
ers key concepts but is purposefully designed not
to be an exhaustive reference manual. It is in par-
ticular more about objects and their properties
than about proving things.

Ideally, it will provide the reader with the mo-
tivation, justification, and contextualization of
the notions that are presented, giving a sense of
their purpose instead of simply defining them.

François Fleuret,
2024.09.09
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Part I

Fundamentals
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Chapter 1

Sets and Numbers

The foundation of mathematics is the set theory,
from which everything is constructed.

The most important objects for practical use are,
of course, numbers and the operations we can de-
fine to put them to use for modeling and solving
numerical problems.

This first chapter aims at clarifying how to for-
malize mathematical propositions, and what is
the formal definition of numbers.

Set theory is abstract and formal, and may ap-
pear as far from concrete objectives, but it pro-
vides both clear notations to express a problem,
and mental tools to manipulate objects.

9
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1.1 Sets

The entirety of mathematics is built on the no-
tion of set, which can be intuitively understood
as a collection of elements.

Providing a more precise definition goes beyond
the objectives of this volume. It requires in par-
ticular to envision mathematics not as dealing
with actual objects, but as deducing correct for-
mal statements given axioms and rules of infer-
ence.

Definition and equality

The most basic way to denote a set is to list its
elements between braces, e.g.

𝒞 = { airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, truck }.

There is no order, and no element can appear
twice. Two sets are equal if they contain exactly
the same elements.

Given a set S, we write that an element x is in
it with x∈ S and given another set T , if all its
elements are in S, we say that T is a subset of
S, and we write T ⊂ S.

10
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S

•
x

x∈ S

S

T

T ⊂ S

The symbols /∈ and ̸⊂ denote that these proper-
ties are not true.

The empty set that contains no element is de-
noted ∅, and the cardinal |S| of a set S is the
number of elements it contains, which can be
a finite number, or an infinite. The notion of
infinite is a technical topic, but we will not need
to dig into it.

Union, intersection and difference

The intersection of two sets S∩T is the set of
the elements that are in both, and their union
S∪T is the set of the elements that are in one
or both.

S

T

S

TT

S

S∩T

S

TT

SS

T

S

TT

S

S∪T
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Finally S \T is the subset of S composed of the
elements of S which are not in T .

S

T

S

T

S

T

S \T

Jaccard index

A reasonable measure of similarity between sets
is the Jaccard index, in some contexts called the
intersection over union:

J(A,Â) =
|A∩Â|
|A∪Â|

= 1/4.

Its value is 1 when the match is perfect, that is
all attributes are predicted and no false attribute
is predicted, and 0 if no correct attribute is pre-
dicted.

***
Consider for instance a multi-class prediction
task, whereA= {male,bald,with glasses} is the
target set of attributes, that is the ones to predict,
and Â= {male,with beard} are the predicted
ones.

12
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Cartesian product

Sets can be combined to create sets of tuples of
elements thanks to the Cartesian product.

Given sets S1,. ..,SK , the set ofK-tuples com-
posed on an element of each is denoted

S1×S2×···×SK .

Hence, for instance

{1,2}×{f,g,h}=
{(1,f),(2,f),(1,g),(2,g),(1,h),(2,h)}.

We can also define families of elements of S in-
dexed with elements of T with ST , which is the
same as mappings from T into S, we will come
back to this in § 2.1. Individual components of
an element x∈ ST are usually referred to as xt
for any t∈ T .

If N is a non-zero integer, in such exponent no-
tation N is a short-hand for {1,. ..,N}, which
implies for instance that

AK×L =A{1,...,K}×{1,...,L}

is the set of arrays of K rows of L columns of
elements from A.

13
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Finally the power set 𝒫 (S) of a set S is the set
of all its subsets, sometime denoted 2S

𝒫 ({1,2,3}) =
{∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.

The cardinals of sets built with these operations
are simple expressions of the cardinals of the
combined sets. We have |SN |= |S|N , |S×T |=
|S||T |, and |𝒫 (S)|= 2|S|.

Note that there often is a fuzziness around
certain equalities between sets. For instance,
S×(T ×U), (S×T )×U and S×T ×U are dif-
ferent sets, but in many contexts we operate as
if it was the case for the sake of simplicity.

***
All these tools can be put to use in practice to
define formally complicated sets.

Consider for instance a detection task where
a square image is split regularly into 16 square
cells of size∆×∆, and that there can be a target
with coordinates in each cell, or no target. The
prediction would be a value in(

{0,. ..,∆−1}2∪{no target}
)4×4

.

14
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1.2 Formal propositions

When dealing with formal logic, one may use
additional symbols to express conjunctions, dis-
junction and such. We will use English words
instead for those, such as “and”, “or”, “such that”,
etc.

We will use two standard quantifiers to express
certain propositions: the symbol ∃ stands for
“there exists”, ∃! for “there exists a unique”, and
∀ for “for all”.

Also, the symbol⇒ expresses that a proposition
implies another, ⇔ that two propositions are
equivalent, and “s.t.” stands for “such that”. The
equivalence of two propositions is also some-
times phrased “if and only if”.

This results in formal statements such as:

∀x,y,z, (x= y and y= z) ⇒ x= z,

or
(∃x∈ S) ⇔ (S ̸= ∅).

***
Consider a data set of N samples (Xn,An)
where Xn is an image of a face and An a set
of attributes. That there is at least one sample

15
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with the attribute “bald” can be written as:

∃n∈ {1,. ..,n}, s.t. bald∈An.

16
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1.3 Real numbers

The simplest set of numbers are the natural num-
bers, denoted N, that contains 0,1,2,. .. . It can
be extended to the set of integers denoted Z that
contains also negative values.

This set can itself be extended into the set of
rational numbers denoted Q, that contains any
value that can be expressed as the ratio of two
integers, and then into the set of real numbers,
denoted R, which contains basically “all” the
numbers, that is with any sequence of digits.

The difference between rational and real num-
bers may seem a bit technical, but it is quite
important. First, while a rational can be encoded
with a finite amount of information, that is not
the case for real numbers: we can define a way
to associate a unique real number to any infinite
sequence of integers, we will come back to this
is § 2.1. Second, many legitimate operations in-
volving rational numbers lead to a result which
is not. In the same way that you need to extend
the integers to rational to answer the question
“If there are three pizzas and four patrons, how
many pizza each one gets?”, you have to extend
the rational to answer “what value multiplied by
itself gives two?”.

17
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The set of real numbers is such that if a proce-
dure computes a value by generating digits one
after another, or more generally by producing a
sequence of approximations of a value that gets
more and more accurate, this ultimate value is
a real value. Technically, such a set is complete,
there is no “hole” in it. That is not the case of
the set of rational numbers: one can devise a
sequence of rational numbers that approximate
more and more a value such as

√
2, which is not

a rational.

All these sets are equipped with the usual ad-
dition, denoted with +, and multiplication, de-
noted with · or nothing when there is no ambi-
guity.

When it comes to programming a computer,
these sets are idealized models of what we actu-
ally manipulate, which is always finite. It is re-
markable how thinking with these ideal objects
is actually a powerful way of devising computer
recipes.

Vectors and intervals

Using Cartesian product with R allows to define
tuples of real numbers, that can be manipulated
as vectors, we will come back to this is § 3.1.

18
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It happens often that we need to define a range
of real values, with a precise specification of
the inclusion or exclusion of the bounds, which
happens to be important in some contexts. We
will come back to this is § 5.2.

Such a range is called an interval, and the in-
clusion or exclusion of the bounds is indicated
using square brackets or parenthesis, e.g.

[0,1] = {x∈R, 0≤ x≤ 1},
[0,1) = {x∈R, 0≤ x< 1}.

In this context the symbol ∞ can be used to
indicate the absence of bound, e.g.

(−∞,0) = {x∈R, x < 0},
[1,+∞) = {x∈R, x≥ 1}.

An interval is open if it does not contains its
bound.

19
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1.4 Complex numbers

The real numbers do not provide a solution to
the equation x2+1= 0.

Defining an “imaginary” value i that has explic-
itly the property i2 =−1, and then defining the
set of values of the form a+ ibwhere a,b∈R2 re-
sults in the set of the complex numbers, denoted
C, on which the addition and multiplication of
real numbers naturally generalize:

(a+ ib)+(c+ id) = (a+c)+ i(b+d)

(a+ ib)(c+ id) = ac−bd+ i(ad+cb).

While this construction may seem a bit strange
and arbitrary, the resulting set of complex num-
bers has many consistent and elegant properties.
We will come back to this in § 6.8.

Given a complex number z = a+ ib∈C, its con-
jugate is z̄ = a− ib, its real part is re(z) = a and
its imaginary part is im(z) = b.

We can summarize this hierarchy of number sets
as follows, where each set is a subset of the ones

20
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below:

N 0,1,2,3

Z −2,−1,0,1,2

Q −2
3 , 1115 ,

999
1000

R −
√
2,17, 12 ,π,

1
1+π

C 1+ i,
√
3i,π,iπ

We usually denote one of these sets with zero
removed by adding a ∗, for instance Z∗, and we
restrict it to negative or positive values by adding
a sign, such as R+ or Z−.

21
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Chapter 2

Operations

In the same way that sets are an abstraction and
generalization of numbers, operations on the el-
ements of a set, such as the addition or the mul-
tiplication, can be defined in an abstract manner,
providing a general framework to manipulate
them and study their properties.

Many patterns that we are used to when we
manipulate quantities in basic arithmetic extend
to complex objects, allowing us to think about
them at the proper level of complexity.

22
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2.1 Mappings

A mapping f , also called a function, is an object
that associates to any element of a set, called its
domain, an element from another set, called its
codomain. These two sets can be identical.

Domain Co-domain

2

3

7
8

0
0 1

Formally, given two sets S and T , a mapping is
actually defined as a subset of S×T , such that
every element x of S appears in one, and only
one, pair. The value f(x) is then the second
value of that pair. This can be depicted as a
graph, with the domain as horizontal axis, the
codomain as vertical axis, and a point at every
(x,y) such that y= f(x).

0 2 3 7 8

0

1
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The definition of a mapping requires to first spec-
ify these two sets and then what element in the
codomain is associated to any element of the do-
main. For instance, the mapping that associates
to any integer its successor would be

f :Z→Z
k 7→ k+1.

Note that indexed families of elements are for-
mally mappings, that is an element of AS is a
mapping S →A. In particular a n-tuple of el-
ements of A is a mapping {1,. ..,n}→A. The
notation ST may be used to denote the set of all
mappings from S to T .

***
Consider for instance an image classifier that
takes as input a three-channel image of resolu-
tion H×W , and computes C real scores cor-
responding to the C possible classes. It can be
defined as a mapping:

ϕ : [0,1]3×H×W →RC .

Image and preimage

Given a mapping from S to T , for any x∈ S,
the value it maps x to is denoted f(x) and is

24
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called the image of x. Given y ∈ T , the subset of
elements of S that have y for image is called the
preimage of y and denoted f−1(y), hence

∀y ∈ T,f−1(y) = {x∈ S s.t. f(x) = y}.

Note that there is a single image for any element,
but the preimage of an element is a set, and can
be empty or contain multiple elements.

Here f : S → T , with f(a) =w, f(b) = x,
f(c) = x, f(d) = z. Hence we have the
preimages f−1(w) = {a}, f−1(x) = {b,c},
f−1(y) = ∅, f−1(z) = {d}.

S T

•
a

•b
•c

•d

• w

• x

•
y•

z

Given a mapping f : S → T , and a subset U ⊂
S, the set of the images of the element of U is
denoted f(U). The particular set f(S) is called
the image of f , sometime denoted Img(f). In
the previous figure f(S) = {w,x,z}.

Consider for instance the Heaviside step func-
25
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tionH that maps any strictly negative real num-
ber to 0, and any positive real number to 1:

H :R→R

x 7→
{

0 if x< 0
1 otherwise.

We haveH−1(0) =R∗
−,H−1(1) =R+ and ∀y ∈

R\{0,1}, H−1(y) = ∅.

Bijection

A mapping is called a one-to-one mapping, or a
bijection, if two different elements have different
images, and every element of the codomain is
the image of an element of the domain. Such
a function f has an inverse that maps any y to
the unique x such that f(x) = y, and is usually
denoted like the preimage, that is f−1.

A bijection is an important object since its exis-
tence allows in many situations to envision and
operate on the domain and the codomain as if
they where the same thing.

Composition

Given two mappings f : S → T and g : T →R,
we define the composition of f and g, denoted
g◦f , as the mapping obtained by applying f and

26
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g successively

g◦f : S →R

x 7→ g(f(x)).

***
The composition of mappings is the exact for-
malization of a combination of layers in a deep
model.

Consider S being the set of input signal, say
sound samples, T the set of internal representa-
tion, and U the desired output, for instance pairs
of values for a music vs non-music classification
task.

We can have a first layer f : S → T that encodes
the input signal into the internal representation,
a linear layer l : T → T , a read-out layer r : T →
U , and an activation function σ : T → T .

The full network can be represented as

S T T T T U
f σ l σ r

and defined formally as

ϕ= r◦σ◦ l◦σ◦f.

27
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Arrow diagrams

A powerful type of representations are figures
with multiple mappings on a common diagram.
For instance with

f :A→B

g :B→C,

and ϕ= g◦f , we can draw

A B C
f g

ϕ

A diagram is said to be commutative if, for any
pair of sets in it, all the paths connecting them
represent the same mapping.

Consider three functions Z→Z defined as f :
x 7→ x+1, g : x 7→ x+2 and ϕ : x 7→ 2x. Since
∀x, ϕ(f(x)) = g(ϕ(x)), we have the following
commutative diagram

Z Z

Z Z

f

ϕ

g

ϕ

28
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***
Consider the set ℐ of images of a given resolu-
tion, the mapping

f :ℐ →ℐ

that flips images horizontally, and a classifier

ϕ :ℐ → [0,1]

that predicts the probability that an image is
that of a cat. If that classifier is invariant to an
horizontal flipping of the image, we have the
following commutative diagram.

ℐ ℐ

[0,1]

f

ϕ ϕ

Infinities

A infinite set S is countable if there exists a map-
ping f :N→ S with Img(f) = S, that is you can
visit all the elements of S one after another and
miss none. It may seem counter-intuitive that
there are uncountable sets for which this is not
true, but this is very much the case.

29
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The key point is that the elements of a countable
set are themselves “finite” in some way: they can
be described with a finite amount of information.

Consider for instance, the setS of infinite strings
of 0s and 1s with a finite number of 1s.

Any element of S can be described with a fi-
nite number of symbols, you just have to list the
ranks of the 1s, and at some point to say “fin-
ished”. To build a mapping from N to S, we just
need to find a way of visiting one after another.
Start with the string with only 0, then the string
starting with a 1 followed by 0s, and from there
all the strings with only 0s after position 2, then
after position 3, etc.

This creates a sequence of strings where none is
missing, hence S is countable.

Now let S∗ be the set of all the infinite strings
of 0s and 1s. Imagine that it is countable, hence
that there is a sequence s1,s2,. .. in which all
the elements of S∗ appear.

Consider then a string s̃∈ S∗ that has at position
n a digit different from the one in sn at that posi-
tion. By construction s̃ differs from sn for any n,
hence it does not appear among the s1,s2,s3,. .. ,
and that sequence could not visit all the elements

30
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of S∗, which consequently is uncountable.

s1 = 0 1 0 0 1 1 0 0 · ··
s2 = 1 1 1 1 0 1 1 0 · ··
s3 = 1 0 0 1 1 1 0 0 · ··
s4 = 0 1 1 0 0 1 0 0 · ··
s5 = 1 1 1 1 1 0 0 1 · ··
s6 = 0 0 0 0 0 1 1 0 · ··
s7 = 1 1 1 0 1 0 0 0 · ··
s8 = 0 0 1 1 1 0 1 0 · ··

· ··

s̃= 1 0 1 1 0 0 1 1 · ··

This is Cantor’s diagonal argument, and it is
possible because you have an infinite degrees of
freedom that you can tune in a single element of
S∗, hence you can construct one that is outside
any given countable family of elements.

The unpleasant conclusion is that, while R is un-
countable, since any real number has an infinite
number of digits that can be arbitrary (as long
as they do not end with an infinite sequence of
9s), the subset of elements of R that you can
describe, e.g. in English, is countable, since an
English sentence is a finite string of characters.

Hence there are infinitely more real numbers that
cannot be described than real numbers that can
be described.

31
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2.2 Operators

Given a set S, an operator on S is a mapping

f : S×S → S.

The two elements it operates on are called its
operands.

Operators are generally denoted with a symbol
between the operands, as for the addition or the
multiplication, instead of a standard mapping
evaluation denoted with the operands between
parentheses.

Operator properties

An operator ⊗ is commutative if switching
operands does not change the result,

∀(x,y)∈ S2, x⊗y= y⊗x.

It is associative if, when it is applied twice to
three operands, the order in which the operator
is applied does not matter,

∀(x,y,z)∈ S3, (x⊗y)⊗z = x⊗(y⊗z).

It is distributive over another operator ⊕ if

∀(x,y,z)∈ S3, x⊗(y⊕z) = (x⊗y)⊕(x⊗z).

32
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The addition and multiplication on the sets of
numbers are both commutative and associative,
and the multiplication is distributive over the
addition.

Thanks to associativity, the value of a sum or
a product of more than two terms does not de-
pend on which order the individuals operations
are done, which permits the usual practice of
not parenthesizing such expressions, since any
parenthesizing gives the same results. Moreover,
combined with commutativity, the result does
not depend on the order of the terms.

Sigma and pi operators

Sums or products of indexed families of elements
can be expressed either with ellipsis when there
is no ambiguities, or more formally with the
sigma and pi operators, where the indexes to
visit are specified under and above the operator
symbol, and the quantities to sum are defined
on its right, such as

4∑
i=1

f(i) = f(1)+f(2)+f(3)+f(4)

n∏
k=0

(2k+1) = 1 ·3 ·5 · ·· · ·(2n+1).

33
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These expressions can be combined
3∑

k=1

k∏
l=1

zl = z1+z1 ·z2+z1 ·z2 ·z3.

and although it may involve some technicalities,
they can operate on infinite series of terms∑

k≥0

2−k = 1+2−1+2−2+ ·· · .

Homomorphisms

When a mapping is defined between two sets
each endowed with an operator, it may happen
that there is some consistencies between them
such that operating in one set reflects operating
in the other.

More formally, consider a set S with an operator
⊙, a set T with an operator ⊗, and a mapping
f : S → T such that

∀(x,y)∈ S2,f(x⊙y) = f(x)⊗f(y).

In such a case, f is called an homomorphism,
and this notion is essential in mathematics as it
allows to transport properties known to be true
for a set to another one.

This may seem extremely abstract, but it corre-
sponds to something we do intuitively all the

34
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time. Consider the set of chunks of dough, with
the operator “stick together”, the set of positive
real numbers with the addition, and the mapping
“weighing a chunk of dough”.

35
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2.3 Groups, rings, and fields

Many reasoning can be done only from the op-
erator properties, without needing to take into
account what is the specific set they operate on.
This abstract way of operating is the fundamen-
tal motivation for the study of algebraic struc-
tures, in particular the groups, rings, and fields.

Groups

A group can be understood in some way as a
generalization of the integers with their addition.

It is a set G endowed with an operator ⊙ with
the following properties:

• the operator ⊙ is associative

∀(a,b,c)∈G3, a⊙(b⊙c) = (a⊙b)⊙c,

• there is a neutral element

∃e∈G, s.t. ∀x∈G, x⊙e= e⊙x= x,

• every element has an inverse

∀x∈G, ∃y ∈G, s.t. x⊙y= y⊙x= e.

Even though it can be initially seen as nothing
more than the integers, this structure appears

36
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in many different contexts. Real numbers with
their addition, or non-null real numbers with
their multiplication are groups. But they also ap-
pear in diverse situations ranging from geometry
to analysis.

When the context is such that the operator is
intuitively an addition, the neutral element is
generally denoted 0, and the inverse of an el-
ement x may be called the negative of x and
denoted −x.

***
Consider for instance data augmentation for im-
age classification. You may define a series of
base transformations such as 90◦ rotation, and
horizontal symmetry, and use the set of all trans-
formations obtainable by combining these two.
The resulting set of transformations has natu-
rally a group structure.

Rings and fields

A ring is a group, equipped with a second op-
erator, which has also a neutral element, and is
distributive over the first operator. We generally
call the two operators “addition” and “multipli-
cation”, and this structure is of course a general-
ization of the integers.
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Finally, a field is a ring such that every element—
except the neutral element for the addition—has
an inverse for themultiplication. The usual fields
are Q, R and C.

Note that in this formalization, there is no sub-
traction or division. Subtracting a value means
to add the inverse for the addition, and divid-
ing means multiplying with the inverse for the
multiplication.
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2.4 Metric space

In many situations, it is useful to define a notion
of distance between elements of a set.

Such an object is a mapping that associates a
positive value to any pair of objects, and verifies
basic properties that make it intuitive to trans-
fer reasoning in usual geometric spaces to more
abstract situations.

More precisely a distance on a set S is a mapping

d : S2 →R+,

with the following properties:

• the distance from any element to itself is null

∀x∈ S, d(x,x) = 0,

• the distance between two different elements
is non-null

∀(x,y)∈ S2, x ̸= y ⇒ d(x,y)> 0,

• it is commutative

∀(x,y)∈ S2, d(x,y) = d(y,x),and

• it verifies the triangle inequality

∀(x,y,z)∈ S3, d(x,y)+d(y,z)≥ d(x,z).
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The last property induces in particular a consis-
tent notion of neighborhood of an element y: if
x is close to y and z is also close to y, then x and
z are close to each other.

A set equipped with a distance is called a metric
space. A similar notion of proximity can be cap-
tured by an even more abstract structure called a
topology that directly defines the neighborhoods,
without doing it indirectly through a distance.

A mapping between two metric spaces f : S →
T that preserves distances, that is

∀(x,x′)∈ S2, dS(x,x
′) = dT (f(x),f(x

′))

is called an isometry.

Finally, we can define a ball centered at x∈ S
and or radius r ∈R+ as the subset

ℬ(x,r) = { y ∈ S, d(x,y)≤ r }.

As for intervals, we can defined an open ball by
taking a strict inequality.
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Part II

Linear algebra
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Chapter 3

Vectors and Linearity

The computational workhorse of deep learning
are linear operations. They recombine quanti-
ties by multiplying them by constant coefficients
and summing them, and can be denoted and ma-
nipulated with matrices, which have nice and
intuitive properties.

Many operations can be expressed as, or approx-
imated with, linear functions, and this class of
operations can be represented in a compact man-
ner, and implemented efficiently on micropro-
cessors.

Fully connected layers, convolutional layers, and
components of the attention layers are linear op-
erations, most implemented as matrix products.
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3.1 Vector space

Linear algebra deals with vectors, which are in-
tuitively displacements or positions. They are
generalization of displacements in our standard
3D geometric space where they are triplets of
real numbers. A set of vectors with the right
tools to work with them is a vector space.

As we will see, even though the original moti-
vation is geometrical, vectors appear in many
different contexts. They are often use as a “series
of values” on which one can operate jointly.

A vector space has an addition, a null vector, and
every vector has an additive inverse, that is the
opposite vector is also in the vector space. That
gives it a group structure

But a vector can also be multiplied with a scalar
and this external multiplication interacts consis-
tently with the addition. So technically a vector
space is associated to a field that operates on
it through a scalar multiplication. For the sake
of simplicity, if not indicated otherwise, we will
consider only R-vector spaces.

Formally, a vector space is a group (E,+), with
a mapping R×E →E, called a scalar multipli-
cation, such that:
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• the scalar multiplication is associative,

∀(a,b,v)∈R×R×E, a(bv) = (ab)v,

• the neutral element for the multiplication in
the field is neutral for the scalar product

∀v ∈E, 1v= v,

• the scalar multiplication is distributive over
the vector addition

∀(a,u,v)∈R×E×E, a(u+v) = au+av,

• the scalar multiplication is distributive over
the scalar addition

∀(a,b,v)∈R×R×E, (a+b)v= av+bv.

The most usual vector space is RD, that is the
set of D-tuples of real values. For D= 2 those
are vectors in the plane, and for D= 3 vectors
in space.

We call the individual values in the tuple coor-
dinates. The vector addition is simply the ad-
dition of coordinates separately, and the scalar
multiplication is the multiplication of individual
coordinates separately.
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3.2 Linear independence and bases

Given a family of vectors v1,. ..,vD , a linear com-
bination of them is a quantity of the form

a1v1+ ·· ·+aDvD,

where ad ∈R, d= 1,. ..,D.

The linear span of this family of vectors is the
set of their linear combinations:

span(v1,. ..,vD) =

{a1v1+ ·· ·+aDvD, (a1,. ..,aD)∈RD}.

The linear span of a single vector can be pictured
as a line going through zero, the linear span of
two vectors which are not aligned is a plane
going through zero, and so on. A linear span
is itself a vector space, that is the addition and
scalar product stay in it.

Vectors are linearly independent if their only
linear combination equal to the null vector is
that with all the an equal to zero. Equivalently,
it means that none of these vectors can be ex-
pressed as a linear combination of the others. In
some way such a family is “minimal”: removing
one of the vector changes their linear span. Note
however that they are not unique. A bunch of
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vectors can be rotated or scaled in their linear
span so that it does not modify it.

When two vectors are not linearly independent,
they are colinear, which means that each one is
equal to the other multiplied by a coefficient.

The rank of a family of vectors is the dimension
of their linear span.

A basis of a vector space E is a family of vec-
tors linearly independent whose linear span is
E itself. All the bases of a given vector space
have the same number of vectors, which is the
dimension of the vector space dim(E). It can be
infinite.

(1,0,0)

(0,1,0)

(0,0,1)

(a,b,c)

(0,b,0)

(a,0,0)

(0,0,c)

The canonical basis for RD is composed of the
vectors with all coordinates equal to zero but
one equal to 1. For instance for R3 that would
be {(1,0,0),(0,1,0),(0,0,1)}. The coordinates
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of a vector in this basis are its coordinate as is:

(a,b,c) = a(1,0,0)+b(0,1,0)+c(0,0,1).
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3.3 Linear mappings

A mapping f from a vector space E into R or
another vector space is linear if it commutes with
the vector addition

∀(u,v)∈E2, f(u+v) = f(u)+f(v),

and with the scalar multiplication

∀(a,v)∈R×E, f(av) = af(v).

From this, we have

f(a1v1+ ·· ·+aDvD) =

a1f(v1)+ ·· ·+aDf(vD),

which implies that the values of a linear mapping
on any basis completely define it.

So for instance, given the linear mapping

f :R2 →R3

(1,0) 7→ (2,1,3)

(0,1) 7→ (1,−1,1)
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we can compute the value of f(1,3) with

f(1,3) = f(1(1,0)+3(0,1))

= 1f(1,0)+3f(0,1)

= 1(2,1,3)+3(1,−1,1)

= (2,1,3)+(3,−3,3)

= (5,−2,6)

It is hard to overstate the importance of this
result: while a mapping from a vector space to
another one is an extremely complicated object
that can do “whatever it wants” at every single
point of the space, and may require an infinitely
complex and lengthy description, being linear
constrains it so much that its entire behavior can
be summarized by knowing its value on a basis.

Additionally linearity implies

∀(u,v,e)∈E3,f(u+e) = f(v+e)+f(u−v),

hence the behavior of f around u is the same
as around v plus a constant. It is reasonable to
picture f as “doing the same thing everywhere”.

And finally, as we will see in § 4.1, since linear
mappings can be expressed through their values
on a basis, we can manipulate them as numerical
objects, even though they are functional ones.
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Image and kernel

Given a linear mapping f :E → F , its image

Img(f) = f(E) = {f(u), u∈E}

is a vector space, and the preimage of the null
vector, called the kernel of f

Ker(f) = {u∈E, f(u) = 0},

is also a vector space.

The sum of the dimensions of these two sub-
spaces is the dimension of the domain

dim(Img(f))+dim(Ker(f)) = dim(E).
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3.4 Norm and inner product

It is often useful to equip a vector space with
notions of vector length and a way to quantify
if vectors “go in the same direction”.

Norm

Given a vector space E over R, a norm is a map-
ping E →R+ that associates to any vector a
“length”. This is defined formally through the
following properties

• it is definite, meaning

∀u∈E, u ̸= 0 ⇒ ∥u∥> 0,

• it verifies the absolute homogeneity

∀(a,u)∈R×E, ∥au∥= |a|∥u∥,

• it verifies the triangle inequality

∀(u,v)∈E2, ∥u+v∥ ≤ ∥u∥+∥v∥.

It generalizes the notion of length, and in partic-
ular d(x,y) = ∥x−y∥ is a distance.

A normed vector is a vector whose norm is equal
to one.
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Inner product

An inner product is a generalization of the dot
product that we will see in § 3.5, and it expresses
how strongly two vectors “agree”, that is both
how long they are individually and how much
they points toward the same direction.

Formally, it is a mapping

E2 →R

generally denoted ⟨u,v⟩, with the following
properties:

• it is definite positive, meaning

∀u∈E, u ̸= 0 ⇒ ⟨u,u⟩> 0,

• it is commutative

∀(u,u′)∈E2, ⟨u,u′⟩= ⟨u′,u⟩,

• it is linear in both operands.

Note that the extension of this notion to vector
spaces over C involves technicalities with the
commutativity.

A key property is that if v=
∑

iaiui and the ui
are such that ∀i ̸= j, ⟨ui,uj⟩= 0, we have

⟨v,uj⟩=
∑
i

ai⟨ui,uj⟩= aj⟨uj ,uj⟩
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so recovering the ais is simple, while it is not in
the general case.

Two vectors whose inner product is equal to zero
are said to be orthogonal, and a set of vectors is
orthogonal if all its elements are orthogonal to
each other. Vectors orthogonal to each other are
linearly independent.

A linear mapping f :E →E is said to be orthog-
onal if it keeps inner products unchanged, that
is

∀(x,x′)∈E2, ⟨x,x′⟩= ⟨f(x),f(x′)⟩.

An inner product induces a norm, with
∀u∈E, ∥u∥=

√
⟨u,u⟩.

In general a vector space with an inner product
is also equipped with the norm and the distance
it induces. Since an orthogonal mapping keeps
the inner product unchanged, it also keeps the
norm, and the distance unchanged, and can be
pictured intuitively as an isometry, that is as a
composition of a rotation and/or a symmetry.

An orthonormal basis is composed of vectors all
of norm equal to 1, and orthogonal to each other.
If {u1,. ..,uD} is such a basis and v is a vector
equal to

∑
iaiui, then ⟨v,uj⟩= aj .
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3.5 Euclidean vector spaces

The standard inner product on RD is the dot
product, generally denoted with a · and equal to
the sum of the pairwise products of the operands’
coordinates:

∀(u,v)∈
(
RD

)2
, u ·v=

D∑
d=1

udvd.

The associated norm is the Euclidean norm, tra-
ditionally denoted ∥.∥2, and equal to

∥u∥2 =
√
u ·u=

√√√√ D∑
d=1

u2d.

This is the usual length, consistent with the
Pythagorean theorem.

The canonical basis is orthonormal for the dot
product and the Euclidean norm, and RD as
a vector space is generally implicitly equipped
with them, and referred to as the Euclidean vec-
tor space.

Finally, all the inner products on RD are of the
form ⟨u,v⟩= f(u) ·v where f :E →E is linear.

54



draft 2024.09.09

Chapter 4

Matrices and matrix
operations

Because linear mappings can be entirely repre-
sented with their values on a basis, they can be
manipulated as series of vectors, written as a
matrix of numbers. As we will see, this represen-
tation, and the operations on these objects share
a lot of similarities with usual calculus.
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4.1 Matrices

A matrix is a rectangular array of real values
which, withM its number of columns andN its
number of rows, is interpreted as a family of M
vectors of RN written vertically.

The convention is that the number of rows, or
the row index, is written first, and the number of
columns, or column index, second. Hence here
the matrix is of size N×M .

A natural addition between matrices of same
size is the vector-wise addition, that is the
component-wise addition. Formally:

∀(A,B)∈
(
RN×M

)2
,

∀i,j, (A+B)i,j =Ai,j+Bi,j .

Note that for concision, since the context is clear,
we have not specified the ranges of i and j.

A natural way of multiplying two matrices is to
do it component-wise, which is the Hadamard
product

1 2 3
0 −1 2

⊙ −2 4 −3
2 4 1

=
−2 8 −9
0 −4 2

The transposition of a matrix is the matrix ob-
tained by swapping the row and column coordi-

56



draft 2024.09.09

nate, which corresponds to flipping it over the
diagonal. Formally, with the transposition de-
noted with a T:

∀A∈RN×M ,∀i,j, AT

i,j =Aj,i.

A matrix is diagonal, respectively upper trian-
gular an lower triangular, if its only non-zero
entries are on the diagonal, respectively on the
diagonal and above, and on the diagonal and be-
low. Given a vector u∈RN , theN×N diagonal
matrix with the entries of u on its diagonal is
denoted diag(u).

(0)

(0)

diagonal

(0)

upper
triangular

(0)

lower
triangular
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4.2 Matrix product

A linear mapping RM →RN is entirely defined
by its value on a basis of RM . Hence, with the
convention that the m-th column of a matrix
is the image of the m-th vector of the canoni-
cal basis, there is a one-to-one correspondence
between N×M matrices and linear mappings
RM →RN .

By definition, the product of the N×M matrix
of a linear mapping f :RM →RN with a matrix
M×K of K vectors u1,. ..,uK of RM is the
N×K matrix of theK images f(u1),. ..,f(uK),
elements of RN . For instance

2 1
1 −1
3 1

1 0 2
0 1 −1

=
2 1 3
1 −1 3
3 1 5

.

f(e1) f(e2)

u1 u3u2

f(u1) f(u3)f(u2)

Formally the product of two matrices is possible
if the number of columns of the first is equal to
the number of rows of the second, and we have:

∀A∈RN×M ,B∈RQ×N , ∀i,k,
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(BA)i,k =
∑
j

Bi,jAj,k.

An equivalent way of envisioning it is as com-
puting all the dot-products between the rows of
the left matrix and the columns of the right one

− r1−
− r2−
− r3−

| |
c1 c2
| |

=
r1 ·c1 r1 ·c2
r2 ·c1 r2 ·c2
r3 ·c1 r3 ·c2

.

This operation is associative and distributive
over the matrix addition, but is not commuta-
tive. This last point is obvious when dealing
with rectangular matrices for size compatibility
alone.

The associativity implies in particular that

B(AU) = (BA)U,

hence the matrix associated to the composition
of two linear mappings is the product of the
matrices associated to each of them.

Multiplying by a diagonal matrix on the left mul-
tiply each row of the right matrix by a scalar

−1 0
0 2

2 4 3
0 2 2

=
−2 −4 −3
0 4 4
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and multiplying on the right multiply each col-
umn of the left matrix by a scalar

2 4 3
0 2 2

−1 0 0
0 2 0
0 0 1

=
−2 8 3
0 4 2

.

An identity matrix is a square matrix with ones
on the diagonal and zeros everywhere else, and
it is the neutral element for the matrix product,
and usually denoted I.

A matrix is symmetric if it is equal to its trans-
pose. It is orthogonal if it is the matrix of an
orthogonal mapping, meaning it is a square ma-
trix whose columns, and rows, are orthonormal.
The product of such a matrix with its transpose
gives the identity matrix.

1 0 0
0 1 0
0 0 1

5 −1 3
−1 1 4
3 4 2

1√
2

0 1√
2

1√
2

0 − 1√
2

0 −1 0

identity symmetric orthogonal

With the convention that a vector u is equiva-
lently represented as a D×1 matrixU, the dot
product can be expressed as u ·v=U

T
V
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4.3 Determinant

The determinant of a square matrix A is a func-
tion that depends on all its entries, and is the
only one such that

• the value for an identity matrix is 1,

• swapping two rows multiplies it by −1,

• multiplying a row by a scalar multiplies the
determinant by the same value,

• adding to any row a linear combination of the
other rows keeps the determinant unchanged.

The determinant ofA is denoted det(A), or |A|,
and for 2×2 and 3×3 matrices we have∣∣∣∣ a b

c d

∣∣∣∣= ad−bc,

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣= aei+bfg+cdh−ceg−fha− ibd.

The general form is the sum, across all possible
row permutations, of the products of the terms
on the diagonal, multiplied by the sign of the
permutation.
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The determinant is invariant to transposition,
and a convenient property is that the determi-
nant of an upper or lower triangular matrix, or
consequently a diagonal matrix, is equal to the
product of its diagonal terms.

The absolute value of the determinant of a 2×2
matrix is the area of the parallelogram defined
by the two row vectors. Similarly the absolute
value of the determinant of a 3×3 matrix is the
volume of the parallelepiped defined by the three
row vectors.

This notion of volume extends to higher dimen-
sions. The interpretation for the linear mapping
associated to thematrix is that the absolute value
of the determinant reflects how much it inflates
the space, and its sign if it “flips” the space.

A key property of the determinant is that it is
equal to zero if the rows are not linearly indepen-
dent. This is consistent with the volume interpre-
tation: if the rows are not linearly independent,
the resulting “hyper parallelepiped” is flat.
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Also consistent with this interpretation is the
property that the determinant of an orthogonal
matrix is 1 or −1, and the determinant of a ma-
trix product is the product of their determinants,
since the volume scaling and the flipping signs
multiply

∀A,B, det(BA) = det(B)det(A).
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4.4 SVD and Eigendecomposition

Matrices can be decomposed in many ways as
products of matrices with special properties.

A

V
T

Σ

U

An important one is the Singular Value Decom-
position (SVD): any N×M matrix A can be
expressed as a productUΣV

T , where

• U is a N×N orthogonal matrix,

• Σ is a N×M positive diagonal matrix,

• V is a M×M orthogonal matrix.

Hence, any linear transformation can be pictured
as applying an isometry, possibly removing or
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adding additional coordinates set to zero, scal-
ing the others, and applying an isometry again.
This decomposition is not unique, and the terms
in the diagonal matrix Σ can be chosen to be
positive or negative.

Eigendecomposition

A square matrix A is diagonalizable if it can
be expressed as a product UΣU−1, where Σ is
diagonal. Such a decomposition is not always
possible, and its existence means that there is a
basis where the linear function associated to the
matrix simply multiplies each coordinate by a
constant. A vectorX s.t.

∃λ∈R, AX= λX

is called an Eigenvector of A and the associated
λ is its Eigenvalue.

Characterizing what matrices are diagonalizable
is a bit involved, but a simple and useful subset
are the symmetric matrices, that are all diago-
nalizable. For such a matrixU is orthogonal.

A nice property of a diagonalizable matrix is that

An =
(
UΣU−1

)n
=UΣnU−1.
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4.5 Inversion

If a square matrixA has a non-zero determinant,
there exists an inverse matrix for the product,
denoted A−1. Formally:

∀A∈RD×D, det(A) ̸= 0 ⇒
∃A−1 ∈RD×D s.t. AA−1 =A−1A= I.

Such an inverse can be put to use to solve a
system of linear equations. For instance

3x− 2y+ z= 2
x+ y− z= 0

2x+2y+ z= 7
⇔

3 −2 1
1 1 −1
2 2 1

x
y
z

=
2
0
7

consequently, if we multiply both side on the left
by the inverse, we get

x
y
z

=
3 −2 1
1 1 −1
2 2 1

−1
2
0
7

.

There are many algorithms to compute it, but
this goes beyond the scope of this book, and
computing it is actually rarely necessary. Solving
a system of equations for instance can be done
directly, without computing the inverse per se
in the process.
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Part III

Analysis
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Chapter 5

Real functions

Real functions are mappings R→R, which is
an incredibly rich set, of cardinal greater than
that of R, and contains extremely pathological
objects.

However mappings actually useful, in particu-
lar to model computer programs, are a simple
subset. They are computable—hence their set is
countable—and obtained by combining elements
from a finite pre-defined family.
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5.1 Functional spaces

Real functions are mappings R→R, which can
be seen as particular cases of multivariate vec-
tor-valued functions RM →RN .

Since the sum of two functions is a function,
zero is a function, the opposite of a function is a
function, you can multiply a function by a real
value, and all this is associative, the set of such
mappings is naturally a vector space on R.

This is also true of many subsets of that space,
for instance the linear mappings that we saw in
§ 3.3, the affine ones, which are sums of a linear
mapping and a constant, or the polynomials that
we will see in § 6.8. More generally, a powerful
way of defining a functional space is to take the
linear span of a hand-defined family of mappings.
We will come back to this.

A real function is said to be even if it verifies
∀x,f(x) = f(−x), that is its graph is symmetric
with respect to the y axis. And it is said to be
odd if it verifies ∀x,f(x) =−f(−x), that is its
graph is symmetric with respect to the origin.
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5.2 Limits and continuity

As for algebraic reasoning, many objects and
properties in calculus concern classes of func-
tions with certain behaviors, independently of
how they are defined. An important concept
to define these classes is the notion of limits,
which characterize the behavior of the values
that takes a mapping when its argument ap-
proaches a value or goes to infinity.

We say that f :RM →RN has for limit L∈RN

at u∈RM if the closer x gets to u, the closer
f(x) gets to L. This is denoted as

lim
x→u

f =L,

and it is formalized by stating that for any ball
ℬ(L,ϵ) centered on L, as small as you want,
there is a ball ℬ(x,δ) centered on x such that
all the points of the latter are mapped by f in
the former:

∀ϵ > 0, ∃δ > 0, s.t. ,∀x∈RM ,

0< ∥x−u∥< δ ⇒ ∥f(x)−L∥< ϵ.

where ∥·∥ is the Euclidean norm (see § 3.5).

Note that this property says nothing about f(u)
itself being equal to L. If that is the case, the
function f is continuous at u.

70



draft 2024.09.09

In the case of single variable mappings R→RN ,
we can define one-sided limits that express a
property of the behavior when the argument ap-
proaches u from the left or the right. For instance
f has a limit L from the right at u, denoted as

lim
x→u+

f =L,

if, and only if

∀ϵ > 0, ∃δ > 0, s.t. ,∀x∈R,
0<x−u< δ ⇒ ∥f(x)−L∥< ϵ.

A function may have a limit Lr on the right of
u, a limit Ll on the left of u, and a value y at u
itself that differ

y

Lr

Ll

u

and it is continuous at u if, and only if, these
three values are equal.
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The graph of a real function continuous at every
points on an interval is continuous in the usual
sense, that is it does not break anywhere and
could be drawn without lifting a pencil.

A real function may also have limits when its
argument goes to infinity, or have infinite limits.

For instance a function f having a limit L when
x goes to +∞ is denoted

lim
x→+∞

f(x) =L,

which can be stated formally as

∀ϵ > 0, ∃U > 0, s.t. ,∀x∈R,
x > U ⇒ ∥f(x)−L∥< ϵ.

For a function not to have a limit at a point,
not even to infinity, it must have a pathological
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behavior since it must have an infinity of oscil-
lations when approaching the said point. Such
functionals are unusual in practice.

However, reasonable functions may have no
limit when going to infinity (e.g. they oscillate)
or may be discontinuous at certain points. A
function as trivial as the Heaviside step function
defined in § 2.1 has a discontinuity at zero.
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Chapter 6

Differential calculus

The second key branch of mathematics for Deep
Learning is differential calculus. It encompasses
methods to define and compute rates of increase
of mappings, and to estimate local linear approx-
imations of complex mapping.

This allows in particular to operate locally with
representations that can be encoded and oper-
ated on with matrices.
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6.1 Differentiability

The fundamental principle of differential calcu-
lus is that a large class of useful functions are
“smooth” and can be approximated locally at ev-
ery point u with an affine mapping, that is the
sum of a constant and a linear mapping.

Not only are there clear relations between a func-
tional f and that approximation in most applied
domain (e.g. position and speed, area and po-
sition), but the formal expression of it can be
derived in a systematic manner from the formal
expression of f . This makes it essential in the
optimization methods used in deep learning.

Derivative

In the case of a real function f :R→R the tradi-
tional definition of f being differentiable at u is
that f ’s rate of increase has a limit f ′(u) there.
Intuitively, it means that if you “zoom enough”
at u, the graph of f looks like a straight line
there.

More precisely, that means that the domain of f
contains an open interval that contains u, so that
we can approach u on both sides locally with f
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being always defined, and we have

lim
δ→0

f(u+δ)−f(u)

δ
= f ′(u).

The value f ′(u) can be interpreted as the slope
of the tangent to the graph of f at u, in blue on
the figure, and the function u 7→ f ′(u) is called
the derivative of f .

u

δ

f(u+δ)−f(u) f ′(u)δ

The quantity f ′(u) is sometime denoted df
dx(u) to

express the interpretation that when x increases
by an “infinitesimal” dx, the value f(x) increases
by the “infinitesimal” df = f ′(u)dx. This is the
Leibniz notation.

Affine approximation

A better way of envisioning the differentiability
of f at u, generalizable to f :RM →RN , is that
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it can be approximated around that point with
the sum of f(u) and a linear mapping.

Formally, f is differentiable at u, if its domain
contains a ball centered at u and of radius r > 0,
and there exists a linear function lu :RM →RN

and a continuous function hu :RM →RN with
hu(0) = 0 such that, ∀δ ∈ℬ(0,r),

f(u+δ) = f(u)+ lu(δ)+hu(δ)∥δ∥.

Hence, one can make hu arbitrarily small, and
consequently make lu an arbitrarily accurate ap-
proximation of f , by considering a part of the
domain close enough to u.

u

f(u+δ)

hu(δ)∥δ∥
f(u)+ lu(δ)

In the real case, there are sometimes confusion
between f ′(u), which is a real number, and lu,
which is a linear function. The relation between
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them is
∀u, lu : x 7→ f ′(u)(x−u).

Jacobian

As we saw in Chapter 4, any linear function can
be expressed as a matrix product.

Given a differentiable function
f :RN →RM ,

the M×N matrix of the linear approximation
lu, that is the

f(u+δ)≃ f(u)+Mδ

is called the Jacobian matrix and usually denoted
(∇f)(u).

It can be seen as a generalization of the deriva-
tive. In the same way that f ′(u) is the rate
of increase of f :R→R at u when its argu-
ment increases, the entry mi,j(u) of (∇f)(u)
is the rate of increase of the ith component of
f :RN →RM at u when the jth component of
its argument increases.

This can be denoted

mi,j(u) =
∂fi
∂xj

(u).

following the Leibniz notation.
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6.2 Some functions

Calculus utilizes a large number of functions
with well known properties and behavior. We
list here some of the important ones.

Power function

The first is the power function, of the form

R+ →R+

x 7→ xa

which, for a∈N, is the multiplication of x by
itself a times. This definition leads to the prop-
erties that xaxb = xa+b, and (xa)b = xab.

For x ̸= 0, the first of these properties leads
naturally to x0 = 1 and to xa = 1/x−a, so that
xax−a = x0 = 1. Things are undefined for x= 0
and a≤ 0.

From the second property, for x> 0 we get,
x1/n = n

√
x, from which xa/b = ( b

√
x)

a.

So for x> 0 we can compute xr for any r ∈Q.
By continuity, we can finally define xd for x≥ 0
and d∈R+, and for x> 0 and d∈R−.

For d∈ 2Z this function is positive and even,
that is ∀x,xd = (−x)d, and for d ̸∈ 2Z it is odd,

79



draft 2024.09.09

that is ∀x,xd =−(−x)d

x 7→ x−2 x 7→ x−1 x 7→ x0

x 7→ x1/2 x 7→ x1 x 7→ x2

x 7→ x3 x 7→ x4 x 7→ x5

A remarkable property of the power function is
that the derivative of x 7→ xd is x 7→ dxd−1.

Trigonometric functions

A particular set of functions relate angles and Eu-
clidean coordinates. These trigonometric func-
tions can be defined geometrically by consider-
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ing the unit circle, that is the circle of radius 1
centered at (0,0).

Given a pointP on that circle, if θ is the length of
the arc starting at (1,0) and extending counter-
clockwise to P , we define the Cosine and the
Sine as the functions that maps θ to the horizon-
tal and the vertical coordinates of P respectively.

1

cos(θ)

sin(θ)
tan(θ)

θ

P

The Tangent maps θ to the vertical coordinate
of the intersection between the line OP and
the vertical line of equation x= 1, and we have
tan(x) = sin(x)

cos(x) .

These functions are extended to θ ∈R outside
[0,2π) by considering that it corresponds to go-
ing multiple times around the circle, resulting in
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functions of period 2π, and we have sin′ = cos
and cos′ =−sin.

−π π

sin(x)

−π π

cos(x)

−π π

tan(x)

Exponential and logarithm

Since the power function of a real u> 0 can be
extended to any real exponent, we can define
the exponential function of base u∈R∗

+, where
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the exponent itself is the argument, that is

R→R+

x 7→ ux.

For any u∈R+ this function takes the value 1
for x= 0, but its slope at 0 increases with u.

The particular value that results in a slope of 1
at 0 is e≃ 2.71828, and the function x 7→ ex is
the exponential, sometime denoted x 7→ exp(x).

It has in particular the remarkable property to
be equal to its derivative, that is exp′ = exp,
which results in it appearing in many phenom-
ena where the growth rate of a value is propor-
tional to the value, such as epidemics or reso-
nance.

exp(x)

x+1

This function is a bijection, and an isomorphism
between the group (R,+) and the group (R∗

+,·).

The inverse of the exponential is the logarithm.
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It is a isomorphism between the group (R∗
+,·)

and the group (R,+). A remarkable property
of this function is that its derivative is x 7→ 1/x.
Hence the logarithm is related to power func-
tions through its derivative.

log(x)

x−1

The beauty of it all

There is a remarkable consistency between these
functions that comes separately from arithmetic
for the power function, from differential calculus
for the logarithm, and from geometry for the
trigonometric functions.

A key unifying object is the generalization of the
exponential to the complex numbers.

The exponential can be expressed as a power
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series, an infinite sum of terms

exp(x) = 1+x+
x2

2
+
x3

6
+ ·· ·+ xn

n!
+ ·· ·

Many functions can be expressed as a infinite
series of power functions, but manipulating
such infinite sums involves subtle and counter-
intuitive technicalities that go far beyond the
objectives of this book. However, for that one in
particular, because the coefficients go down far
more quickly than the power terms increases, it
is very well behaved and does not require too
much care.

This expression can be evaluated for x∈C,
hence we can define the exponential function for
complex numbers, which ties together the expo-
nential, and the trigonometric functions through
this equality:

∀(a,b)∈R2,

exp(a+ ib) = exp(a) ·(cosb+ isinb) ,

which leads in particular to

eiπ+1= 0.
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6.3 Formal differentiation

The Jacobian of a function f can be expressed
by explicitly computing limits, but this is gener-
ally tedious. Since most functions used in prac-
tice are combinations of elements from a limited
set of functions, in particular the exponentia-
tion, the sine and cosine, the exponential and
the logarithm, the usual approach is to combine
the derivatives of these standards functions with
formal rules, according to the definition of f .

With f :RN →RM , g :RN →RM , h :RM →
RQ, and (a,b)∈R2, we have:

• affine transformation:

∇(af+b) = a(∇f),

• sum:
∇(f+g) =∇f+∇g,

• component-wise product:

∇(f⊙g) = diag(g)∇f+diag(f)∇g,

• composition:

∇(h◦f) = ((∇h)◦f)∇f.
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6.4 Second derivative, Hessian
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6.5 Integral
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6.6 Functional norms
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6.7 Fourier transform
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6.8 Polynomials
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Part IV

Probabilities
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Chapter 7

Random variables
and distributions

The third mathematical pillar of deep learning
is probability theory, which provides tools to
model and manipulate random quantities.

By essence, the proper framework to formalize
mathematical methods that operate on real data
is probabilistic.

93



draft 2024.09.09

7.1 Distributions and Densities

The most direct way to formalize the behavior of
a random quantity consists of specifying what
is the probability of each value it may take.

As we will see in § 7.5, modeling consistently
multiple random values and their interactions
with each other is done by defining the notion of
random variables, which requires a bit of work.

Discrete distributions

Given a countable set V , we can describe a ran-
dom quantity X with values in V with a proba-
bility distribution on V , which is a mapping

PX : V → [0,1]

that associates to every possible value v ∈ V , its
probability of occurring, with the property that∑

v∈V
PX(v) = 1.

We may also write P (X = v) instead of PX(v).

If this quantity models a system that can be re-
peatedly sampled, P (X = v) is the limit of the
proportion of v, when the number of samples
tends to infinity.
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Consider two examples:

• With h for “head” and t for “tail”, the outcome
C of flipping a fair coin can be formalized with
the distribution

P (C = h) = 1/2, P (C = t) = 1/2.

• The distribution of the sum S of two dice can
be represented with a graph as

2 3 4 5 6 7 8 9 10 11 12

1/36

6/36

And the probability that a random value is in a
subset is simply the sum of the probabilities of
the elements of that set

∀T ⊂ V, P (X ∈ T ) =
∑
x∈T

P (X = x).

From this, we have in particular that

∀T ⊂ V,U ⊂ V, T ∩U = ∅
⇒ P (X ∈ T ∪U) = P (X ∈ T )+P (X ∈U).

95



draft 2024.09.09

A distribution is uniform, if all the values it can
take have the same probability. We will see some
other standard distributions in § 7.6.

Continuous distributions

In the case of non-countable sets, things are
slightly more complicated, since there can only
be a countable set of values of probability greater
than zero. Modeling a random quantity that can
take any value in a continuous domain is done
by defining only the probabilities of intervals of
values.

In the most usual case, a distribution on R is
defined indirectly through a probability density,
which is a mapping

µX :R→R+

such that ∫
x∈R

µX(x)dx= 1.

Then, given this density, the distribution ofX is
defined as

∀a,b∈R2, a≤ b,

P (X ∈ [a,b]) =

∫ b

a
µX(x)dx.
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An intuitive way of understanding a density is
that to sample a real value according to it, we
would pick uniformly a point under the graph
of µX , and then take the resulting x.

a b

µX

The notion of density extends to higher dimen-
sion, and they can be of the form

µZ :RD →R+.

A probability density is uniform on a set S if it
is constant in S and equal to zero outside.
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7.2 Independence

The definition of distributions of the previous
sections allows in particular to define the distri-
bution of tuples of variables.

For instance, the outcome (A,B) of flipping two
coins has for distribution

P ((A,B) = (h,h)) = 1/4,

P ((A,B) = (t,h)) = 1/4,

P ((A,B) = (h,t)) = 1/4,

P ((A,B) = (t,t)) = 1/4.

In such a case, we have two random phenomena
which are unconnected. We model them as if
there is no interactions between the coins, nor
if there is a hidden process that influences them
jointly.

Two random quantities X and Y which have
this joint behavior are said to be independent,
and it can be expressed formally as

∀U,V, P (X ∈U,Y ∈ V ) = P (X ∈U)P (Y ∈ V ).
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7.3 Joint and Product Distributions

In many problems, we have to manipulate mul-
tiple random quantities which often have a de-
pendency structure.

In such a case, the distributions of the individual
quantities do not carry the complete information,
and one has to consider the distribution of all
the quantities together. This is the joint proba-
bility distribution, while the distributions of the
individual quantities are the marginal distribu-
tions.

Let’s for instance defineA andB the outcome of
flipping two fair coins, and C a virtual coin flip
which is “tail” if A=B and “head” otherwise.

Taken separately, all these variables behave like
fair coins. However, their joint distributions is:

a b c P
t t t 1/4
t t h 0
t h t 0
t h h 1/4

a b c P
h t t 0
h t h 1/4
h h t 1/4
h h h 0

So this is a case where knowing the marginal
distributions is not enough to know the joint
distribution.
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The product distribution is the distribution cor-
responding to the quantities being independent,
which is entirely determined by the marginals.

Consider for instance a random pair of real val-
ues (X,Y ) whose distribution is uniform in one
of the following subsets of [0,1]2

S1 S2 S3

The quantities X and Y are independent when
(X,Y ) is taken uniformly in S1, X and Y are
equal when (X,Y ) is taken uniformly in S2,
and X and Y have a bizarre dependency when
(X,Y ) is taken uniformly in S3.

However, in all three cases, the marginals of X
and Y are uniform on [0,1].
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7.4 Conditional Probability

A very powerful notion is that of conditional
probability that express the probability that
something is, given that something else is.

For instance,
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7.5 Probabilities and Random
Variables

The central idea is that a set Ω represents the
source of all randomness, and a random variable
is a mapping from it into a value set V :

X : Ω→ V.

So picking a point ω in Ω, called a sample, fixes
the value X(ω) of any defined random variable.

A subset of Ω is called an event, and the notion
of probability is defined on Ω through a proba-
bility measure that associates a value in [0,1] to
some of its events.

An unpleasant technical point is that in the gen-
eral case we cannot define such a measure for all
the subsets of Ω. This goes beyond the objective
of this book, but the consequence is that we have
to define first a set ℱ ∈𝒫 (Ω) of “measurable”
events, named the event space, and only then we
can define the probability measure as a mapping

P :ℱ → [0,1].

This probability measure is such that P (Ω) = 1,
and it behaves intuitively like a physical exten-
sive property such as the volume or the weight.

102



draft 2024.09.09

In particular P (∅) = 0, and given a countable
family A1,A2,. .. of subsets of Ω which are dis-
joint, that is ∀i ̸= j, Ai∩Aj = ∅, we have

P (∪nAn) =
∑
n

P (An).

Given these definitions, for some subsets U ⊂ V ,
which are “measurable”, we define the probabil-
ity for X to take a value in U as

P (X ∈U) = P (X−1(U)).

Ω V

X−1(U)
U

X

In practice, one should not worry that only some
subsets are measurable. Any subset you actually
need is, and this notion comes into play in only
for technical results of probability theory.

This formalization of randomness through a
probability space (Ω,ℱ ,P ) clarifies the inter-
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action between variables since we have for in-
stance

P (X ∈A,Y ∈B) = P (X−1(A)∩Y −1(B))

which allows the modeling of arbitrarily compli-
cated patterns of interactions.
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7.6 Some distributions

There are many standard discrete distributions.
The most standard ones are:
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7.7 Conditional probability

Union rule, marginalisation, Bayes
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7.8 Moments
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7.9 maximum likelihood
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7.10 Important theorems
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Chapter 8

Tests and inference
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8.1 moments estimate
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8.2 statistical tests
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Chapter 9

Information Theory
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9.1 entropy, cross entropy, mutual
information
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9.2 KL JS Wasserstein
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9.3 variational bounds
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complex numbers, 20
composition, 26
conditional probability, 101
conjugate, 20
continuous, 71
continuous mapping, 70
coordinate, 44
Cosine, 81
countable, 29, 30

definite, 51
definite positive, 52
derivative, 76
determinant, 61
diagonalizable

matrix, 65
differentiable, 75, 77
dimension, 46
distance, 39
distributivity, 32, 37, 44, 59
domain, 23
dot product, 52, 54
dot-products, 59

Eigenvalue, 65
Eigenvector, 65
element, 10

image, see image, element
empty set, 11
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Euclidean norm, 54
Euclidean vector space, 54
event, 102
event space, 102
exponential, 83
exponential function, 82

field, 36, 38, 43
function, 23

graph of, 23, 72

group, 36, 43

Hadamard product, 56
Heaviside step function, 26, 73
homomorphism, 34

image, 50, 58
of a mapping, 25
of an element, 25

imaginary part, 20
independent, 98
inner product, 52
integers, 17
intersection over union, 12
interval, 19

open, 19
inverse, 36
inverse function, 26
inverse matrix, 66
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isometry, 40, 53

Jaccard index, 12
Jacobian matrix, 78
joint probability distribution, 99

kernel, 50

Leibniz notation, 76, 78
limit, 70
linear, 52

combination, 45
independence, 45
mapping, see mapping, linear
span, 45, 69

linear mapping, 69, 75
logarithm, 83, 84

mapping, 13, 23, 43, 48, 58
image, see image, mapping
linear, 48, 50, 53, 55
orthogonal, 53, 60

marginal distributions, 99
matrix, 55, 56

addition, 56
diagonal, 57, 59, 62, 64
identity, 60
lower triangular, 57, 62
orthogonal, 60, 64
product, 58

121



draft 2024.09.09

symmetric, 60
transposition, 56
upper triangular, 57, 62

metric space, 40
multiplication, 18, 20, 33
multivariate function, 69

natural numbers, 17
neighborhood, 40
neutral element, 36, 44
norm, 51, 53
normed vector, 51

one-sided limit, 71
one-to-one mapping, 26
operands, 32
operator, 32
orthogonal, 53

mapping, see mapping, orthogonal
matrix, see matrix, orthogonal

orthonormal, 60

polynomial, 69
power function, 79, 80, 82, 84
power series, 85
power set, 14
preimage, 25, 50
probability density, 96
probability distribution, 94
probability measure, 102
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product
matrix, see matrix, product

product distribution, 100
Pythagorean theorem, 54

quantifier, 15

random variable, 94, 102
rank, 46
rational numbers, 17
real function, 68, 69

even, 69, 79
odd, 69, 79

real numbers, 17
real part, 20
ring, 36, 37

sample, 102
scalar multiplication, 43, 44
set, 10
Sine, 81
Singular Value Decomposition, 64
subset, 10
SVD, see Singular Value Decomposition, 64

Tangent, 81
topology, 40
triangle inequality, 39, 51
trigonometric functions, 80, 84
tuple, 13
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uncountable, 29, 31
uniform distribution, 96, 97
unit circle, 81

vector, 18, 43
vector addition, 43, 44
vector space, 43, 69
vector-valued function, 69
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