
Deep learning

x.y. Denoising Diffusion

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

The denoising diffusion (Ho et al., 2020) is a generative model that consists in
(1) generating data with a diffusion process, and (2) training a stochastic
denoising auto-encoder to reverse it.

. . .
q(x1|x0) q(x2|x1) q(xT |xT−1)

pθ (x0|x1) pθ (x1|x2) pθ (xT−1|xT)

The synthesis starts by sampling a random signal corresponding to the limit of
the diffusion process, and iterates the denoising auto-encoder for the same
number of iterations.

François Fleuret Deep learning / x.y. Denoising Diffusion 1 / 24

Given a data-set 𝒟 ⊂ RD , and

0 < βt < 1, t = 1, . . . ,T ,

let q be a distribution over RD×T of a “diffusion process”, defined as

x0 ∼ 𝒰(𝒟)

∀t = 1, . . . ,T , ϵt ∼ 𝒩 (0, I)

xt =
√

1− βt xt−1 +
√

βt ϵt

with x0 and the ϵts independent.

The re-scaling factors are such that if E[x0] = 0 and V[x0] = I, we have

∀t = 0, . . .T , E[xt] = 0,V[xt] = I.

François Fleuret Deep learning / x.y. Denoising Diffusion 2 / 24

Given a data-set 𝒟 ⊂ RD , and

0 < βt < 1, t = 1, . . . ,T ,

let q be a distribution over RD×T of a “diffusion process”, defined as

x0 ∼ 𝒰(𝒟)

∀t = 1, . . . ,T , ϵt ∼ 𝒩 (0, I)

xt =
√

1− βt xt−1 +
√

βt ϵt

with x0 and the ϵts independent.

The re-scaling factors are such that if E[x0] = 0 and V[x0] = I, we have

∀t = 0, . . .T , E[xt] = 0,V[xt] = I.

François Fleuret Deep learning / x.y. Denoising Diffusion 2 / 24

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t = 0 t = 125 t = 250

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t = 375 t = 500 t = 625

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t = 750 t = 875 t = 1000

François Fleuret Deep learning / x.y. Denoising Diffusion 3 / 24

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t = 0 t = 125 t = 250

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t = 375 t = 500 t = 625

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 2 1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t = 750 t = 875 t = 1000

François Fleuret Deep learning / x.y. Denoising Diffusion 3 / 24

Thanks to the independence of the successive steps, and since a sum of
independent Gaussians is Gaussian, we can sample directly xt | x0 for any t.

If we define

αt = 1− βt

ᾱt =
t∏

s=1

αs

we have
∀t > 0, q(xt | x0) = 𝒩

(
xt ;

√
ᾱt x0, (1− ᾱt) I

)
.

This shows in particular that even with small βt , for T large enough, the
distribution xT | x0 is ≃ 𝒩 (0, I) and does not depend on the data distribution

François Fleuret Deep learning / x.y. Denoising Diffusion 4 / 24

Let pθ be the distribution of the denoising process, which is Markovian too

log pθ(x0:T) = log pθ(xT) +
T∑
t=1

log pθ(xt−1 | xt:T)

= log pθ(xT) +
T∑
t=1

log pθ(xt−1 | xt).

If we are interested by synthesis of clean samples, given training samples
z1, . . . , zN , we want to minimize

− log
N∏

n=1

pθ(zn) = N Ēx0:T∼q [− log pθ(x0)] .

François Fleuret Deep learning / x.y. Denoising Diffusion 5 / 24

Let pθ be the distribution of the denoising process, which is Markovian too

log pθ(x0:T) = log pθ(xT) +
T∑
t=1

log pθ(xt−1 | xt:T)

= log pθ(xT) +
T∑
t=1

log pθ(xt−1 | xt).

If we are interested by synthesis of clean samples, given training samples
z1, . . . , zN , we want to minimize

− log
N∏

n=1

pθ(zn) = N Ēx0:T∼q [− log pθ(x0)] .

François Fleuret Deep learning / x.y. Denoising Diffusion 5 / 24

Ex0:T∼q [− log pθ(x0)] = Ex0:T∼q

[
− log

pθ(x1:T | x0)
pθ(x1:T | x0)

pθ(x0)

]
= Ex0:T∼q [− log pθ(x0:T)] + Ex0:T∼q [log pθ(x1:T | x0)]
= Ex0:T∼q [− log pθ(x0:T)] + Ex0∼qEx1:T∼q|x0 [log pθ(x1:T | x0)]
≤ Ex0:T∼q [− log pθ(x0:T)] + Ex0∼qEx1:T∼q|x0 [log q(x1:T | x0)]
= Ex0:T∼q [− log pθ(x0:T)] + Ex0:T∼q [log q(x1:T | x0)]

= Ex0:T∼q

[
− log

pθ(x0:T)

q(x1:T | x0)

]
= Ex0:T∼q

[
− log

pθ(xT)
∏T

t=1 pθ(xt−1 | xt)∏T
t=1 q(xt | xt−1)

]

= Ex0:T∼q

[
− log pθ(xT)−

T∑
t=1

log
pθ(xt−1 | xt)
q(xt | xt−1)

]

François Fleuret Deep learning / x.y. Denoising Diffusion 6 / 24

So we get

Ex0:T∼q [− log pθ(x0)] ≤ Ex0:T∼q

[
− log pθ(xT)−

T∑
t=1

log
pθ(xt−1 | xt)
q(xt | xt−1)

]
,

if pθ(xT) is a fixed distribution that does not depend on θ, we have to minimize

Ex0:T∼q

[
−

T∑
t=1

log pθ(xt−1 | xt)
]
,

hence train a model that approximates the reverse Markov process.

We can take
pθ(xt−1 | xt) = 𝒩 (xt−1;µθ(xt), βt I).

François Fleuret Deep learning / x.y. Denoising Diffusion 7 / 24

So we get

Ex0:T∼q [− log pθ(x0)] ≤ Ex0:T∼q

[
− log pθ(xT)−

T∑
t=1

log
pθ(xt−1 | xt)
q(xt | xt−1)

]
,

if pθ(xT) is a fixed distribution that does not depend on θ, we have to minimize

Ex0:T∼q

[
−

T∑
t=1

log pθ(xt−1 | xt)
]
,

hence train a model that approximates the reverse Markov process.

We can take
pθ(xt−1 | xt) = 𝒩 (xt−1;µθ(xt), βt I).

François Fleuret Deep learning / x.y. Denoising Diffusion 7 / 24

But we can take advantage of the Gaussian distributions, in particular that:

• we can sample q(x0, xt),

• the distribution of q(xt−1 | x0, xt) is a Gaussian

q(xt−1 | x0, xt) = 𝒩 (xt−1; µ̃t(xt , x0), β̃t I),

with

µ̃t(xt , x0) =

√
ᾱt−1 βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt

β̃t =
1− ᾱt−1

1− ᾱt
βt ,

• given two Gaussians µ and µ′, their cross-entropy

H(µ, µ′) = Ex∼µ
[
− log µ′(x)

]
has a closed form.

François Fleuret Deep learning / x.y. Denoising Diffusion 8 / 24

But we can take advantage of the Gaussian distributions, in particular that:

• we can sample q(x0, xt),

• the distribution of q(xt−1 | x0, xt) is a Gaussian

q(xt−1 | x0, xt) = 𝒩 (xt−1; µ̃t(xt , x0), β̃t I),

with

µ̃t(xt , x0) =

√
ᾱt−1 βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt

β̃t =
1− ᾱt−1

1− ᾱt
βt ,

• given two Gaussians µ and µ′, their cross-entropy

H(µ, µ′) = Ex∼µ
[
− log µ′(x)

]
has a closed form.

François Fleuret Deep learning / x.y. Denoising Diffusion 8 / 24

But we can take advantage of the Gaussian distributions, in particular that:

• we can sample q(x0, xt),

• the distribution of q(xt−1 | x0, xt) is a Gaussian

q(xt−1 | x0, xt) = 𝒩 (xt−1; µ̃t(xt , x0), β̃t I),

with

µ̃t(xt , x0) =

√
ᾱt−1 βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt

β̃t =
1− ᾱt−1

1− ᾱt
βt ,

• given two Gaussians µ and µ′, their cross-entropy

H(µ, µ′) = Ex∼µ
[
− log µ′(x)

]
has a closed form.

François Fleuret Deep learning / x.y. Denoising Diffusion 8 / 24

Ex0:T∼q

[
−

T∑
t=1

log pθ(xt−1 | xt)
]

= −
T∑
t=1

Ex0:T∼q [log pθ(xt−1 | xt)]

= −
T∑
t=1

Ex0,xt−1,xt∼q [log pθ(xt−1 | xt)]

= −
T∑
t=1

Ex0,xt∼q
[
Ext−1∼q|x0,xt [log pθ(xt−1 | xt)]

]
= −

T∑
t=1

Ex0,xt∼q
[
H(q(xt−1 | x0, xt), pθ(xt−1 | xt)

]
=

T∑
t=1

1

2σt
Ex0,xt∼q

[
∥µ̃t(xt , x0)− µθ(xt , t)∥2

]
+ cst

François Fleuret Deep learning / x.y. Denoising Diffusion 9 / 24

Ho et al. (2020) re-parametrize

µθ(xt , t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt , t)

)

François Fleuret Deep learning / x.y. Denoising Diffusion 10 / 24

Following the setup of Ho et al. (2020), we have

αt = 1− βt

ᾱt =
t∏

s=1

αs

σt =
√

βt

T = 1000
beta = torch.linspace(1e-4, 0.02, T, device = device)
alpha = 1 - beta
alpha_bar = alpha.log().cumsum(0).exp()
sigma = beta.sqrt()

François Fleuret Deep learning / x.y. Denoising Diffusion 11 / 24

Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, . . . , T})
4: ε ∼ N (0, I)
5: Take gradient descent step on

∇θ
∥∥ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε, t)

∥∥2

6: until converged

Algorithm 2 Sampling

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt εθ(xt, t)
)

+ σtz

5: end for
6: return x0

Equation (10) reveals that µθ must predict 1√
αt

(
xt − βt√

1−ᾱt ε
)

given xt. Since xt is available as
input to the model, we may choose the parameterization

µθ(xt, t) = µ̃t

(
xt,

1√
ᾱt

(xt −
√

1− ᾱtεθ(xt))
)

=
1√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
(11)

where εθ is a function approximator intended to predict ε from xt. To sample xt−1 ∼ pθ(xt−1|xt) is
to compute xt−1 = 1√

αt

(
xt − βt√

1−ᾱt εθ(xt, t)
)

+σtz, where z ∼ N (0, I). The complete sampling
procedure, Algorithm 2, resembles Langevin dynamics with εθ as a learned gradient of the data
density. Furthermore, with the parameterization (11), Eq. (10) simplifies to:

Ex0,ε

[
β2
t

2σ2
tαt(1− ᾱt)

∥∥ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε, t)

∥∥2
]

(12)

which resembles denoising score matching over multiple noise scales indexed by t [55]. As Eq. (12)
is equal to (one term of) the variational bound for the Langevin-like reverse process (11), we see
that optimizing an objective resembling denoising score matching is equivalent to using variational
inference to fit the finite-time marginal of a sampling chain resembling Langevin dynamics.

To summarize, we can train the reverse process mean function approximator µθ to predict µ̃t, or by
modifying its parameterization, we can train it to predict ε. (There is also the possibility of predicting
x0, but we found this to lead to worse sample quality early in our experiments.) We have shown that
the ε-prediction parameterization both resembles Langevin dynamics and simplifies the diffusion
model’s variational bound to an objective that resembles denoising score matching. Nonetheless,
it is just another parameterization of pθ(xt−1|xt), so we verify its effectiveness in Section 4 in an
ablation where we compare predicting ε against predicting µ̃t.

3.3 Data scaling, reverse process decoder, and L0

We assume that image data consists of integers in {0, 1, . . . , 255} scaled linearly to [−1, 1]. This
ensures that the neural network reverse process operates on consistently scaled inputs starting from
the standard normal prior p(xT). To obtain discrete log likelihoods, we set the last term of the reverse
process to an independent discrete decoder derived from the Gaussian N (x0;µθ(x1, 1), σ2

1I):

pθ(x0|x1) =

D∏

i=1

∫ δ+(xi0)

δ−(xi0)

N (x;µiθ(x1, 1), σ2
1) dx

δ+(x) =

{∞ if x = 1

x+ 1
255 if x < 1

δ−(x) =

{−∞ if x = −1

x− 1
255 if x > −1

(13)

where D is the data dimensionality and the i superscript indicates extraction of one coordinate.
(It would be straightforward to instead incorporate a more powerful decoder like a conditional
autoregressive model, but we leave that to future work.) Similar to the discretized continuous
distributions used in VAE decoders and autoregressive models [34, 52], our choice here ensures that
the variational bound is a lossless codelength of discrete data, without need of adding noise to the
data or incorporating the Jacobian of the scaling operation into the log likelihood. At the end of
sampling, we display µθ(x1, 1) noiselessly.

3.4 Simplified training objective

With the reverse process and decoder defined above, the variational bound, consisting of terms derived
from Eqs. (12) and (13), is clearly differentiable with respect to θ and is ready to be employed for

4

(Ho et al., 2020)

for k in range(args.nb_epochs):

optimizer = torch.optim.Adam(model.parameters(), lr = args.learning_rate)

for x0 in train_input.split(args.batch_size):
x0 = (x0 - train_mean) / train_std
t = torch.randint(T, (x0.size(0),) + (1,) * (x0.dim() - 1), device = x0.device)
eps = torch.randn_like(x0)
xt = torch.sqrt(alpha_bar[t]) * x0 + torch.sqrt(1 - alpha_bar[t]) * eps
output = model((xt, t / (T - 1) - 0.5))
loss = (eps - output).pow(2).mean()

optimizer.zero_grad()
loss.backward()
optimizer.step()

François Fleuret Deep learning / x.y. Denoising Diffusion 12 / 24

Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, . . . , T})
4: ε ∼ N (0, I)
5: Take gradient descent step on

∇θ
∥∥ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε, t)

∥∥2

6: until converged

Algorithm 2 Sampling

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt εθ(xt, t)
)

+ σtz

5: end for
6: return x0

Equation (10) reveals that µθ must predict 1√
αt

(
xt − βt√

1−ᾱt ε
)

given xt. Since xt is available as
input to the model, we may choose the parameterization

µθ(xt, t) = µ̃t

(
xt,

1√
ᾱt

(xt −
√

1− ᾱtεθ(xt))
)

=
1√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
(11)

where εθ is a function approximator intended to predict ε from xt. To sample xt−1 ∼ pθ(xt−1|xt) is
to compute xt−1 = 1√

αt

(
xt − βt√

1−ᾱt εθ(xt, t)
)

+σtz, where z ∼ N (0, I). The complete sampling
procedure, Algorithm 2, resembles Langevin dynamics with εθ as a learned gradient of the data
density. Furthermore, with the parameterization (11), Eq. (10) simplifies to:

Ex0,ε

[
β2
t

2σ2
tαt(1− ᾱt)

∥∥ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε, t)

∥∥2
]

(12)

which resembles denoising score matching over multiple noise scales indexed by t [55]. As Eq. (12)
is equal to (one term of) the variational bound for the Langevin-like reverse process (11), we see
that optimizing an objective resembling denoising score matching is equivalent to using variational
inference to fit the finite-time marginal of a sampling chain resembling Langevin dynamics.

To summarize, we can train the reverse process mean function approximator µθ to predict µ̃t, or by
modifying its parameterization, we can train it to predict ε. (There is also the possibility of predicting
x0, but we found this to lead to worse sample quality early in our experiments.) We have shown that
the ε-prediction parameterization both resembles Langevin dynamics and simplifies the diffusion
model’s variational bound to an objective that resembles denoising score matching. Nonetheless,
it is just another parameterization of pθ(xt−1|xt), so we verify its effectiveness in Section 4 in an
ablation where we compare predicting ε against predicting µ̃t.

3.3 Data scaling, reverse process decoder, and L0

We assume that image data consists of integers in {0, 1, . . . , 255} scaled linearly to [−1, 1]. This
ensures that the neural network reverse process operates on consistently scaled inputs starting from
the standard normal prior p(xT). To obtain discrete log likelihoods, we set the last term of the reverse
process to an independent discrete decoder derived from the Gaussian N (x0;µθ(x1, 1), σ2

1I):

pθ(x0|x1) =

D∏

i=1

∫ δ+(xi0)

δ−(xi0)

N (x;µiθ(x1, 1), σ2
1) dx

δ+(x) =

{∞ if x = 1

x+ 1
255 if x < 1

δ−(x) =

{−∞ if x = −1

x− 1
255 if x > −1

(13)

where D is the data dimensionality and the i superscript indicates extraction of one coordinate.
(It would be straightforward to instead incorporate a more powerful decoder like a conditional
autoregressive model, but we leave that to future work.) Similar to the discretized continuous
distributions used in VAE decoders and autoregressive models [34, 52], our choice here ensures that
the variational bound is a lossless codelength of discrete data, without need of adding noise to the
data or incorporating the Jacobian of the scaling operation into the log likelihood. At the end of
sampling, we display µθ(x1, 1) noiselessly.

3.4 Simplified training objective

With the reverse process and decoder defined above, the variational bound, consisting of terms derived
from Eqs. (12) and (13), is clearly differentiable with respect to θ and is ready to be employed for

4

(Ho et al., 2020)

def generate(size, T, alpha, alpha_bar, sigma, model, train_mean, train_std):

with torch.no_grad():

x = torch.randn(size, device = device)

for t in range(T-1, -1, -1):
output = model((x, t / (T - 1) - 0.5))
z = torch.zeros_like(x) if t == 0 else torch.randn_like(x)
x = 1/torch.sqrt(alpha[t]) \

* (x - (1-alpha[t]) / torch.sqrt(1-alpha_bar[t]) * output) \
+ sigma[t] * z

x = x * train_std + train_mean

return x

François Fleuret Deep learning / x.y. Denoising Diffusion 13 / 24

class TimeAppender(nn.Module):
def __init__(self):

super().__init__()

def forward(self, u):
x, t = u
if not torch.is_tensor(t):

t = x.new_full((x.size(0),), t)
t = t.view((-1,) + (1,) * (x.dim() - 1)).expand_as(x[:,:1])
return torch.cat((x, t), 1)

François Fleuret Deep learning / x.y. Denoising Diffusion 14 / 24

nh = 256

model = nn.Sequential(
TimeAppender(),
nn.Linear(train_input.size(1) + 1, nh),
nn.ReLU(),
nn.Linear(nh, nh),
nn.ReLU(),
nn.Linear(nh, nh),
nn.ReLU(),
nn.Linear(nh, train_input.size(1)),

)

François Fleuret Deep learning / x.y. Denoising Diffusion 15 / 24

1.0 0.5 0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 Train
Synthesis

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Train
Synthesis

François Fleuret Deep learning / x.y. Denoising Diffusion 16 / 24

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Train
Synthesis

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Train
Synthesis

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Train
Synthesis

François Fleuret Deep learning / x.y. Denoising Diffusion 17 / 24

ks, nc = 5, 64

model = nn.Sequential(
TimeAppender(),
nn.Conv2d(train_input.size(1) + 1, nc, ks, padding = ks//2),
nn.ReLU(),
nn.Conv2d(nc, nc, ks, padding = ks//2),
nn.ReLU(),
nn.Conv2d(nc, nc, ks, padding = ks//2),
nn.ReLU(),
nn.Conv2d(nc, nc, ks, padding = ks//2),
nn.ReLU(),
nn.Conv2d(nc, nc, ks, padding = ks//2),
nn.ReLU(),
nn.Conv2d(nc, nc, ks, padding = ks//2),
nn.ReLU(),
nn.Conv2d(nc, train_input.size(1), ks, padding = ks//2),

)

François Fleuret Deep learning / x.y. Denoising Diffusion 18 / 24

Generated samples

François Fleuret Deep learning / x.y. Denoising Diffusion 19 / 24

“Stable diffusion”

tion z = E(x), and the decoder D reconstructs the im-
age from the latent, giving x̃ = D(z) = D(E(x)), where
z ∈ Rh×w×c. Importantly, the encoder downsamples the
image by a factor f = H/h = W/w, and we investigate
different downsampling factors f = 2m, with m ∈ N.

In order to avoid arbitrarily high-variance latent spaces,
we experiment with two different kinds of regularizations.
The first variant, KL-reg., imposes a slight KL-penalty to-
wards a standard normal on the learned latent, similar to a
VAE [46, 69], whereas VQ-reg. uses a vector quantization
layer [96] within the decoder. This model can be interpreted
as a VQGAN [23] but with the quantization layer absorbed
by the decoder. Because our subsequent DM is designed
to work with the two-dimensional structure of our learned
latent space z = E(x), we can use relatively mild compres-
sion rates and achieve very good reconstructions. This is
in contrast to previous works [23, 66], which relied on an
arbitrary 1D ordering of the learned space z to model its
distribution autoregressively and thereby ignored much of
the inherent structure of z. Hence, our compression model
preserves details of x better (see Tab. 8). The full objective
and training details can be found in the supplement.

3.2. Latent Diffusion Models

Diffusion Models [82] are probabilistic models designed to
learn a data distribution p(x) by gradually denoising a nor-
mally distributed variable, which corresponds to learning
the reverse process of a fixed Markov Chain of length T .
For image synthesis, the most successful models [15,30,72]
rely on a reweighted variant of the variational lower bound
on p(x), which mirrors denoising score-matching [85].
These models can be interpreted as an equally weighted
sequence of denoising autoencoders ǫθ(xt, t); t = 1 . . . T ,
which are trained to predict a denoised variant of their input
xt, where xt is a noisy version of the input x. The corre-
sponding objective can be simplified to (Sec. B)

LDM = Ex,ǫ∼N (0,1),t

[
‖ǫ− ǫθ(xt, t)‖22

]
, (1)

with t uniformly sampled from {1, . . . , T}.
Generative Modeling of Latent Representations With
our trained perceptual compression models consisting of E
and D, we now have access to an efficient, low-dimensional
latent space in which high-frequency, imperceptible details
are abstracted away. Compared to the high-dimensional
pixel space, this space is more suitable for likelihood-based
generative models, as they can now (i) focus on the impor-
tant, semantic bits of the data and (ii) train in a lower di-
mensional, computationally much more efficient space.

Unlike previous work that relied on autoregressive,
attention-based transformer models in a highly compressed,
discrete latent space [23,66,103], we can take advantage of
image-specific inductive biases that our model offers. This

Semantic
 Map

crossattention

Latent Space Conditioning

Text

Diffusion Process

denoising step switch skip connection

Repres
entations

Pixel Space

Images

Denoising U-Net

concat

Figure 3. We condition LDMs either via concatenation or by a
more general cross-attention mechanism. See Sec. 3.3

includes the ability to build the underlying UNet primar-
ily from 2D convolutional layers, and further focusing the
objective on the perceptually most relevant bits using the
reweighted bound, which now reads

LLDM := EE(x),ǫ∼N (0,1),t

[
‖ǫ− ǫθ(zt, t)‖22

]
. (2)

The neural backbone ǫθ(◦, t) of our model is realized as a
time-conditional UNet [71]. Since the forward process is
fixed, zt can be efficiently obtained from E during training,
and samples from p(z) can be decoded to image space with
a single pass through D.

3.3. Conditioning Mechanisms
Similar to other types of generative models [56, 83],

diffusion models are in principle capable of modeling
conditional distributions of the form p(z|y). This can
be implemented with a conditional denoising autoencoder
ǫθ(zt, t, y) and paves the way to controlling the synthesis
process through inputs y such as text [68], semantic maps
[33, 61] or other image-to-image translation tasks [34].

In the context of image synthesis, however, combining
the generative power of DMs with other types of condition-
ings beyond class-labels [15] or blurred variants of the input
image [72] is so far an under-explored area of research.

We turn DMs into more flexible conditional image gener-
ators by augmenting their underlying UNet backbone with
the cross-attention mechanism [97], which is effective for
learning attention-based models of various input modali-
ties [35,36]. To pre-process y from various modalities (such
as language prompts) we introduce a domain specific en-
coder τθ that projects y to an intermediate representation
τθ(y) ∈ RM×dτ , which is then mapped to the intermediate
layers of the UNet via a cross-attention layer implementing
Attention(Q,K, V) = softmax

(
QKT

√
d

)
· V , with

Q = W
(i)
Q · ϕi(zt), K = W

(i)
K · τθ(y), V = W

(i)
V · τθ(y).

Here, ϕi(zt) ∈ RN×di
ǫ denotes a (flattened) intermediate

representation of the UNet implementing ǫθ and W
(i)
V ∈

4

(Rombach et al., 2021)

François Fleuret Deep learning / x.y. Denoising Diffusion 20 / 24

CelebAHQ FFHQ LSUN-Churches LSUN-Beds ImageNet

Figure 4. Samples from LDMs trained on CelebAHQ [39], FFHQ [41], LSUN-Churches [102], LSUN-Bedrooms [102] and class-
conditional ImageNet [12], each with a resolution of 256 × 256. Best viewed when zoomed in. For more samples cf . the supplement.

Rd×di
ǫ , W (i)

Q ∈ Rd×dτ & W
(i)
K ∈ Rd×dτ are learnable pro-

jection matrices [36, 97]. See Fig. 3 for a visual depiction.
Based on image-conditioning pairs, we then learn the

conditional LDM via

LLDM := EE(x),y,ǫ∼N (0,1),t

[
‖ǫ−ǫθ(zt, t, τθ(y))‖22

]
, (3)

where both τθ and ǫθ are jointly optimized via Eq. 3. This
conditioning mechanism is flexible as τθ can be parameter-
ized with domain-specific experts, e.g. (unmasked) trans-
formers [97] when y are text prompts (see Sec. 4.3.1)

4. Experiments
LDMs provide means to flexible and computationally

tractable diffusion based image synthesis of various image
modalities, which we empirically show in the following.
Firstly, however, we analyze the gains of our models com-
pared to pixel-based diffusion models in both training and
inference. Interestingly, we find that LDMs trained in VQ-
regularized latent spaces sometimes achieve better sample
quality, even though the reconstruction capabilities of VQ-
regularized first stage models slightly fall behind those of
their continuous counterparts, cf . Tab. 8. A visual compari-
son between the effects of first stage regularization schemes
on LDM training and their generalization abilities to resolu-
tions > 2562 can be found in Appendix D.1. In E.2 we list
details on architecture, implementation, training and evalu-
ation for all results presented in this section.

4.1. On Perceptual Compression Tradeoffs

This section analyzes the behavior of our LDMs with dif-
ferent downsampling factors f ∈ {1, 2, 4, 8, 16, 32} (abbre-
viated as LDM-f , where LDM-1 corresponds to pixel-based
DMs). To obtain a comparable test-field, we fix the com-
putational resources to a single NVIDIA A100 for all ex-
periments in this section and train all models for the same
number of steps and with the same number of parameters.

Tab. 8 shows hyperparameters and reconstruction perfor-
mance of the first stage models used for the LDMs com-

pared in this section. Fig. 6 shows sample quality as a func-
tion of training progress for 2M steps of class-conditional
models on the ImageNet [12] dataset. We see that, i) small
downsampling factors for LDM-{1,2} result in slow train-
ing progress, whereas ii) overly large values of f cause stag-
nating fidelity after comparably few training steps. Revis-
iting the analysis above (Fig. 1 and 2) we attribute this to
i) leaving most of perceptual compression to the diffusion
model and ii) too strong first stage compression resulting
in information loss and thus limiting the achievable qual-
ity. LDM-{4-16} strike a good balance between efficiency
and perceptually faithful results, which manifests in a sig-
nificant FID [29] gap of 38 between pixel-based diffusion
(LDM-1) and LDM-8 after 2M training steps.

In Fig. 7, we compare models trained on CelebA-
HQ [39] and ImageNet in terms sampling speed for differ-
ent numbers of denoising steps with the DDIM sampler [84]
and plot it against FID-scores [29]. LDM-{4-8} outper-
form models with unsuitable ratios of perceptual and con-
ceptual compression. Especially compared to pixel-based
LDM-1, they achieve much lower FID scores while simulta-
neously significantly increasing sample throughput. Com-
plex datasets such as ImageNet require reduced compres-
sion rates to avoid reducing quality. In summary, LDM-4
and -8 offer the best conditions for achieving high-quality
synthesis results.

4.2. Image Generation with Latent Diffusion
We train unconditional models of 2562 images on

CelebA-HQ [39], FFHQ [41], LSUN-Churches and
-Bedrooms [102] and evaluate the i) sample quality and ii)
their coverage of the data manifold using ii) FID [29] and
ii) Precision-and-Recall [50]. Tab. 1 summarizes our re-
sults. On CelebA-HQ, we report a new state-of-the-art FID
of 5.11, outperforming previous likelihood-based models as
well as GANs. We also outperform LSGM [93] where a la-
tent diffusion model is trained jointly together with the first
stage. In contrast, we train diffusion models in a fixed space

5

(Rombach et al., 2021)

François Fleuret Deep learning / x.y. Denoising Diffusion 21 / 24

Text-to-Image Synthesis on LAION. 1.45B Model.
’A street sign that reads

“Latent Diffusion” ’
’A zombie in the
style of Picasso’

’An image of an animal
half mouse half octopus’

’An illustration of a slightly
conscious neural network’

’A painting of a
squirrel eating a burger’

’A watercolor painting of a
chair that looks like an octopus’

’A shirt with the inscription:
“I love generative models!” ’

Figure 5. Samples for user-defined text prompts from our model for text-to-image synthesis, LDM-8 (KL), which was trained on the
LAION [78] database. Samples generated with 200 DDIM steps and η = 1.0. We use unconditional guidance [32] with s = 10.0.

Figure 6. Analyzing the training of class-conditional LDMs with
different downsampling factors f over 2M train steps on the Im-
ageNet dataset. Pixel-based LDM-1 requires substantially larger
train times compared to models with larger downsampling factors
(LDM-{4-16}). Too much perceptual compression as in LDM-32
limits the overall sample quality. All models are trained on a sin-
gle NVIDIA A100 with the same computational budget. Results
obtained with 100 DDIM steps [84] and κ = 0.

Figure 7. Comparing LDMs with varying compression on the
CelebA-HQ (left) and ImageNet (right) datasets. Different mark-
ers indicate {10, 20, 50, 100, 200} sampling steps using DDIM,
from right to left along each line. The dashed line shows the FID
scores for 200 steps, indicating the strong performance of LDM-
{4-8}. FID scores assessed on 5000 samples. All models were
trained for 500k (CelebA) / 2M (ImageNet) steps on an A100.

and avoid the difficulty of weighing reconstruction quality
against learning the prior over the latent space, see Fig. 1-2.

We outperform prior diffusion based approaches on all
but the LSUN-Bedrooms dataset, where our score is close
to ADM [15], despite utilizing half its parameters and re-
quiring 4-times less train resources (see Appendix E.3.5).

CelebA-HQ 256× 256 FFHQ 256× 256

Method FID ↓ Prec. ↑ Recall ↑ Method FID ↓ Prec. ↑ Recall ↑
DC-VAE [63] 15.8 - - ImageBART [21] 9.57 - -

VQGAN+T. [23] (k=400) 10.2 - - U-Net GAN (+aug) [77] 10.9 (7.6) - -
PGGAN [39] 8.0 - - UDM [43] 5.54 - -
LSGM [93] 7.22 - - StyleGAN [41] 4.16 0.71 0.46
UDM [43] 7.16 - - ProjectedGAN [76] 3.08 0.65 0.46

LDM-4 (ours, 500-s†) 5.11 0.72 0.49 LDM-4 (ours, 200-s) 4.98 0.73 0.50

LSUN-Churches 256× 256 LSUN-Bedrooms 256× 256

Method FID ↓ Prec. ↑ Recall ↑ Method FID ↓ Prec. ↑ Recall ↑
DDPM [30] 7.89 - - ImageBART [21] 5.51 - -

ImageBART [21] 7.32 - - DDPM [30] 4.9 - -
PGGAN [39] 6.42 - - UDM [43] 4.57 - -

StyleGAN [41] 4.21 - - StyleGAN [41] 2.35 0.59 0.48
StyleGAN2 [42] 3.86 - - ADM [15] 1.90 0.66 0.51

ProjectedGAN [76] 1.59 0.61 0.44 ProjectedGAN [76] 1.52 0.61 0.34

LDM-8∗ (ours, 200-s) 4.02 0.64 0.52 LDM-4 (ours, 200-s) 2.95 0.66 0.48

Table 1. Evaluation metrics for unconditional image synthesis.
CelebA-HQ results reproduced from [43, 63, 100], FFHQ from
[42, 43]. †: N -s refers to N sampling steps with the DDIM [84]
sampler. ∗: trained in KL-regularized latent space. Additional re-
sults can be found in the supplementary.

Text-Conditional Image Synthesis

Method FID ↓ IS↑ Nparams

CogView† [17] 27.10 18.20 4B self-ranking, rejection rate 0.017
LAFITE† [109] 26.94 26.02 75M
GLIDE∗ [59] 12.24 - 6B 277 DDIM steps, c.f.g. [32] s = 3
Make-A-Scene∗ [26] 11.84 - 4B c.f.g for AR models [98] s = 5

LDM-KL-8 23.31 20.03±0.33 1.45B 250 DDIM steps
LDM-KL-8-G∗ 12.63 30.29±0.42 1.45B 250 DDIM steps, c.f.g. [32] s = 1.5

Table 2. Evaluation of text-conditional image synthesis on the
256 × 256-sized MS-COCO [51] dataset: with 250 DDIM [84]
steps our model is on par with the most recent diffusion [59] and
autoregressive [26] methods despite using significantly less pa-
rameters. †/∗:Numbers from [109]/ [26]

Moreover, LDMs consistently improve upon GAN-based
methods in Precision and Recall, thus confirming the ad-
vantages of their mode-covering likelihood-based training
objective over adversarial approaches. In Fig. 4 we also
show qualitative results on each dataset.

6

(Rombach et al., 2021)

François Fleuret Deep learning / x.y. Denoising Diffusion 22 / 24

“photography of a real car made of pizzas ; very detailed, focused, beautiful
light”

“still from studio ghibli movie ’the red bus in Paris ’; 8 k ; very detailed, focused,
colorful, trending on artstation”

François Fleuret Deep learning / x.y. Denoising Diffusion 23 / 24

“An enormous artificial intelligence in Geneva at dawn”

François Fleuret Deep learning / x.y. Denoising Diffusion 24 / 24

The End

References

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. CoRR,
abs/2006.11239, 2020.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image
synthesis with latent diffusion models. CoRR, abs/2112.10752, 2021.

	References

