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Attention Layers
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There has been recently a strong interest for attention mechanisms to transport
information from parts of the signal to other parts specified dynamically.
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Such mechanisms are very efficient for natural language processing, for which
they have replaced recurrent architectures.
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Consider a task with 1d sequences composed of two triangles and two
rectangles, where the goal is to average heights in each pair of shapes.
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Given a input sequence X € R7*D, a standard convolution layer computes a

result X’ € R7T*D" with
t+A

v, X[ = WstXs.
s=t
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Given a input sequence X € R7*D, a standard convolution layer computes a
result X’ € R7*0" with

t+A
v, X[ = WstXs.
s=t

We test first a 1d convolutional network, with no attention mechanism.

Sequential(
(0): Convid(1l, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(1): ReLUQ)
(2): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): ReLUQ)
(4): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(5): ReLUQ)
(6): Convid(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(7): ReLUQ)
(8): Convid(64, 1, kernel_size=(5,), stride=(1,), padding=(2,))

)

nb_parameters 62337
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The poor performance of this model is not surprising given its inability to channel
information from “far away” in the signal.

More layers, global averaging, or fully connected layers could possibly solve the
problem. However it is more natural to equip the model with the ability to fetch
information from parts of the signal that it actively identifies as relevant.

This is exactly what an attention layer does.
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Given a sequence X € R7*D a standard self-attention layer computes first
three sequences:

- the queries: Q= XW] € RTXC,

— the keys: K=XW,/ e RTC,
- thevalues:  V =XW, e RT*D',
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from which it computes an attention matrix

exp (Qr Ky')
St exp (A K))

where A; s should be interpreted as how much position s matters for
computing the result at position ¢.

vt, s, At,s =
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Given a sequence X € R7*D a standard self-attention layer computes first
three sequences:

- the queries: Q= XW] € RTXC,
— the keys: K=XW,/ e RTC,
- thevalues:  V =XW, e RT*D',

from which it computes an attention matrix

exp (Qr Ky')
St exp (A K))

where A; s should be interpreted as how much position s matters for
computing the result at position ¢.

vt, s, At,s =

And the resulting sequence X’ € RT*D jg

;
vt, X[ = AsVs.
s=1
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Sequential(
(0): Convid(1l, 64, kernel_size=(5,), stride=(1,), padding=(2,))

(1): ReLUQ
(2): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(3): ReLUQ)

(4): AttentionLayer (in_channels=64, out_channels=64, key_channels=64)
(5): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(6): ReLUQ)
(7): Convid(64, 1, kernel_size=(5,), stride=(1,), padding=(2,))
)

nb_parameters 54081
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Transformers
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(Vaswani et al., 2017)
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Head 8-10
- Direct objects attend to their verbs
- 86.8% accuracy at the dobj relation
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Head 8-11

- Noun modifiers (e.g., determiners) attend
to their noun
- 94.3% accuracy at the det relation
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(Clark et al., 2019)
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Total train

Total train

compute compute Params  Iraining tokens

Model (PF-days) (flops) ™) (billions)
T5-Small 2.08E+00  1.80E+20 60 1,000
T5-Base 7.64E+00  6.60E+20 220 1,000
T5-Large 2.67E+01  2.31E+21 770 1,000
T5-3B 1.04E+02  9.00E+21 3,000 1,000
T5-11B 3.82E+02  3.30E+22 11,000 1,000
BERT-Base 1.89E+00  1.64E+20 109 250
BERT-Large 6.16E+00  5.33E+20 355 250
RoBERTa-Base 1.74E+01 1.50E+21 125 2,000
RoBERTa-Large  4.93E+01  4.26E+21 355 2,000
GPT-3 Small 2.60E+00  2.25E+20 125 300
GPT-3 Medium  7.42E+00  6.41E+20 356 300
GPT-3 Large 1.58E+01  1.37E+21 760 300
GPT-3 XL 2.75E+01  2.38E+21 1,320 300
GPT-32.7B 5.52E+01  4.77E+21 2,650 300
GPT-3 6.7B 1.39E+02  1.20E+22 6,660 300
GPT-3 13B 2.68E+02  231E+22 12,850 300
GPT-3 175B 3.64E+03  3.14E+23 174,600 300
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(Brown et al., 2020)
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Multiple attempts have been made at reducing the computational cost:

« Weight pruning (Michel et al., 2019), weight factorization (Lan et al., 2020),
weight quantization (Zafrir et al., 2019).

« Model distillation (Sanh et al., 2019).

« Controlling the attention horizon (Dai et al., 2019; Sukhbaatar et al., 2019).
« Sparse factorization of the attention matrix (Child et al., 2019).

« Hashing (Kitaev et al., 2020).

We have developed one approach that clusters queries to make the cost O(CT)
instead of O(T?) (Vyas et al., 2020), and a second that linearizes the attention
score (Katharopoulos et al., 2020).
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Linear Attention
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An important part of the computation goes into the O(T?) attention-based
processing:
X! = Sosexp (Qr KST) Vs

Es exp (Qt KST)
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X! = Sosexp (Qr KST) Vs

E:s exp (()tf(;r)

If we kernelize the similarity measure, the expression becomes linear:

;s (P(Q) O(Ks) ) Vs
LT T (@) b(Ks) T
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An important part of the computation goes into the O(T?) attention-based

processing:
X — Soexp (Qr K ) Vs
e (AK)

If we kernelize the similarity measure, the expression becomes linear:

;s (P(Q) O(Ks) ) Vs
LT T (@) b(Ks) T

And we can use the associativity of the matrix product to reduce the cost

(e@e()7) v =0(@) (oK) V).

O(T2D)+0(T2D) O(TD2)+0(TD?)

(Katharopoulos et al., 2020)
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In practice we take

®(x) = ELU(X) + 1.
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Figure 1: Comparison of the computational requirements for a forward/backward pass for Reformer (Ish-X), softmax
attention and linear attention. Linear and Reformer models scale linearly with the sequence length unlike softmax which
scales with the square of the sequence length both in memory and time. Full details of the experiment can be found in § 4.1.

(Katharopoulos et al., 2020)
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Additionally, when they are used as generative models (e.g. translation)
transformers require to process the sequence for every new token.

Our linearization allows to keep running quantities:
et D(Qrp1) (Ks) Vs
et ©(Qrir) O(Ks)

D(Qri1) SoE_y O(Ks) Vs
O(Qri1) Sob_y (Ks)

O(Qur) (S @(Ke) TVs) + 0(K) T V1)
O(Qri1) (S} @(K)T) +0(K)T)

which can be interpreted as the hidden state of a recurrent unit.

!
X1 =

(Katharopoulos et al., 2020)
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Iz.lﬁ.ﬂﬁﬂ.

(Katharopoulos et al., 2020)
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Method Bits/dim Images/sec

Softmax 0.621 045 (1x)
LSH-1 0.745 0.68 (1.5%)
LSH-4 0.676 0.27  (0.6%)

Linear (ours) 0.644 142.8 (317x%)

Table 1: Comparison of autoregressive image generation of
MNIST images. Our linear transformers achieve almost the
same bits/dim as the full softmax attention but more than
300 times higher throughput in image generation. The full
details of the experiment are in § 4.2.1.

Method Bits/dim Images/sec
Softmax 3.47 0.004 (1x)
LSH-1 3.39 0.015  (3.75%)
LSH-4 3.51 0.005 (1.25%)

Linear (ours) 3.40 17.85 (4,462x%)

Table 2: We train autoregressive transformers for 1 week
on a single GPU to generate CIFAR-10 images. Our linear
transformer completes 3 times more epochs than softmax,
which results in better perplexity. Our model generates
images 4,000 faster than the baselines. The full details of
the experiment are in § 4.2.2.

(Katharopoulos et al., 2020)
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We need more fast deep models:

« Lots of promising applications of ML involve very large signals (particle
physics, astronomy, microscopy, satellite imaging).

e The trend toward larger models does not seem to slow down.

« Attention mechanisms provide a natural mean to dynamically allocate
bandwidth in a model.
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The end
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