CAS — Ifl — Deep Learning

Francois Fleuret

Course content:

Machine learning basics.

Multi-layer perceptron, convolutions, gradient descent.
Graphs of tensor operators, autograd.

Deep-learning specific techniques.

Computer-vision, generative models, a bit of NLP.
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1.1. From neural networks to deep learning
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Many applications require the automatic extraction of “refined” information
from raw signal (e.g. image recognition, automatic speech processing, natural
language processing, robotic control, geometry reconstruction).

(ImageNet)
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Our brain is so good at interpreting visual information that the “semantic gap”
is hard to assess intuitively.

This ﬁ is a horse
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>>> from torchvision.datasets import CIFAR10
>>> cifar = CIFAR10(’./data/cifar10/’, train=True, download=True)
Files already downloaded and verified
>>> x = torch.from_numpy(cifar.train_data) [43].transpose(2, 0).transpose(l, 2)
>>> x[:, :4, :8]
tensor([[[ 99, 98, 100, 103, 105, 107, 108, 110],
[100, 100, 102, 105, 107, 109, 110, 112],
[104, 104, 106, 109, 111, 112, 114, 116],
[109, 109, 111, 113, 116, 117, 118, 120]],

[[166, 165, 167, 169, 171, 172, 173, 175],
[166, 164, 167, 169, 169, 171, 172, 174],
[169, 167, 170, 171, 171, 173, 174, 176],
[170, 169, 172, 173, 175, 176, 177, 178]1],

[[198, 196, 199, 200, 200, 202, 203, 204],
[195, 194, 197, 197, 197, 199, 200, 201],
[197, 195, 198, 198, 198, 199, 201, 202],
[197, 196, 199, 198, 198, 199, 200, 201]1]], dtype=torch.uint8)
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Extracting semantic automatically requires models of extreme complexity, which
cannot be designed by hand.

Techniques used in practice consist of

1. defining a parametric model, and

2. optimizing its parameters by “making it work” on training data.

This is similar to biological systems for which the model (e.g. brain structure) is
DNA-encoded, and parameters (e.g. synaptic weights) are tuned through
experiences.

Deep learning encompasses software technologies to scale-up to billions of
model parameters and as many training examples.
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There are strong connections between standard statistical modeling and
machine learning.

Classical ML methods combine a “learnable” model from statistics (e.g. “linear
regression” ) with prior knowledge in pre-processing.

“Artificial neural networks” pre-dated these approaches, and do not follow that
dichotomy. They consist of “deep” stacks of parametrized processing.
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From artificial neural networks to “Deep Learning”
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1949 — Donald Hebb proposes the Hebbian Learning principle.
1951 — Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).
1958 — Frank Rosenblatt creates a perceptron to classify 20 x 20 images.

1959 — David H. Hubel and Torsten Wiesel demonstrate orientation selectivity and
columnar organization in the cat’s visual cortex.

1982 — Paul Werbos proposes back-propagation for ANNSs.
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Follows Hubel and Wiesel's results.
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(Fukushima, 1980)
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Network for the T-C problem
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Trained with back-prop.

(Rumelhart et al., 1988)
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LeNet-5

C3: f. maps 16@10x10
C1.: feature maps S4: f. maps 16@5x5
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Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

(leCun et al., 1998)

Francois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 13 / 189



Francois Fleuret

Francois Fleuret

S'Eride

of 4

48

AlexNet

- |
i¥E] 204 2048 \dense
13
13 dense dense)
1000
128 Max Jomt L
Max 8 Max pooling “ 2048
pooling pooling

(Krizhevsky et al., 2012)
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GoogleNet
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(Szegedy et al., 2015)
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Resnet

(He et al., 2015)
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Deep learning is built on a natural generalization of a neural network: a graph
of tensor operators, taking advantage of

the chain rule (aka “back-propagation”),

stochastic gradient decent,

convolutions,

parallel operations on GPUs.

This does not differ much from networks from the 90s
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This generalization allows to design complex networks of operators dealing with
images, sound, text, sequences, etc. and to train them end-to-end.
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CIFAR10
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32 x 32 color images, 50k train samples, 10k test samples.

(Krizhevsky, 2009, chap. 3)
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ImageNet Large Scale Visual Recognition Challenge.

Francois Fleuret
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1000 categories, > 1M images

(http://image-net.org/challenges/LSVRC /2014 /browse-synsets)
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method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43"
GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

method

top-5 err. (test)

VGG [41] ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’ 14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57
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CAS — Deep learning / 1.2. Current applications and success

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except T reported on the test set).

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

(He et al., 2015)

1.2. Current applications and success
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Object detection and segmentation

(Pinheiro et al., 2016)
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Human pose estimation

FLIC

(Wei et al., 2016)
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Reinforcement learning

Self-trained, plays 49 games at human level.

(Mnih et al., 2015)
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Strategy games
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AlphaGo

Google DeepMind

March 2016, 4-1 against a 9-dan professional without handicap.

(Silver et al., 2016)
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Translation

“The reason Boeing are doing this is to cram more seats in to make their plane
more competitive with our products,” said Kevin Keniston, head of passenger
comfort at Europe's Airbus.

“La raison pour laquelle Boeing fait cela est de créer plus de siéges pour rendre
=> son avion plus compétitif avec nos produits”, a déclaré Kevin Keniston, chef
du confort des passagers chez Airbus.

When asked about this, an official of the American administration replied:
“The United States is not conducting electronic surveillance aimed at offices
of the World Bank and IMF in Washington.”

Interrogé a ce sujet, un fonctionnaire de I'administration américaine a répondu:
=> ‘“Les Etats-Unis n'effectuent pas de surveillance électronique a l'intention des
bureaux de la Banque mondiale et du FMI a Washington”

(Wu et al., 2016)

Frangois Fleuret CAS — Deep learning / 1.2. Current applications and success 28 / 189

Auto-captioning

A person riding a Two dogs play in the grass.
motercycle on a dirt road.

A group of young people
playing a game of frisbee

Two hockey players are
_fighting over the puck.

A close up of a cat laying
on a couch.

(Vinyals et al., 2015)
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Question answering

Jane went to the hallway.

Mary walked to the bathroom.
Sandra went to the garden.
Daniel went back to the garden.
Sandra took the milk there.
Where is the milk?

garden

=0 HHHHH

-

It started boring, but then it got interesting.
What’s the sentiment?
positive

= 0

(Kumar et al., 2015)
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Image generation

(Brock et al., 2018)
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Text generation

System Prompt (human-written)

In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes

Mountains. Even more surprising to the researchers was the fact that
the unicorns spoke perfect English.

Model Completion (machine-written, 10 tries)

The scientist named the population, after their distinctive horn,
Ovid’s Unicorn. These four-horned, silver-white unicorns were
previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La
Paz, and several companions, were exploring the Andes Mountains when
they found a small valley, with no other animals or humans. Pérez
noticed that the valley had what appeared to be a natural fountain,
surrounded by two peaks of rock and silver snow.

(Radford et al., 2019)
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Why does it work now?
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The success of deep learning is multi-factorial:

Five decades of research in machine learning,

CPUs/GPUs/storage developed for other purposes,

lots of data from ‘“the internet”,

tools and culture of collaborative and reproducible science,

resources and efforts from large corporations.
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Five decades of research in ML provided

e a taxonomy of ML concepts (classification, generative models, clustering,
kernels, linear embeddings, etc.),

a sound statistical formalization (Bayesian estimation, PAC),

a clear picture of fundamental issues (bias/variance dilemma, VC
dimension, generalization bounds, etc.),

a good understanding of optimization issues,

efficient large-scale algorithms.
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From a practical perspective, deep learning

e lessens the need for a deep mathematical grasp,

o makes the design of large learning architectures a system /software

development task,

o allows to leverage modern hardware (clusters of GPUs),

e does not plateau when using more data,

e makes large trained networks a commodity.

CAS — Deep learning / 1.2. Current applications and success
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TFlops (10%) Price GFlops per $
Intel i7-6700K 0.2 $344 0.6
AMD Radeon R-7 240 0.5 $55 9.1
NVIDIA GTX 750 Ti 1.3 $105 12.3
AMD RX 480 5.2 $239 21.6
NVIDIA GTX 1080 8.9 $699 12.7
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(John C. McCallum)

The typical cost of a 4Tb hard disk is $120 (Dec 2016).
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Data-set Year Nb. images Resolution Nb. classes

MNIST 1998 6.0 x 10° 28 x 28 10
NORB 2004 4.8 x 10* 96 x 96 5
Caltech 101 2003 9.1 x 10° ~ 300 x 200 101
Caltech 256 2007 3.0 x 10* ~ 640 x 480 256
LFW 2007 1.3 x 10* 250 x 250 -
CIFAR10 2009 6.0 x 10 32 x 32 10
PASCAL VOC 2012 2.1 x 10* ~ 500 x 400 20
MS-COCO 2015 2.0 x 10° ~ 640 x 480 91
ImageNet 2016  14.2 x 10° ~ 500 x 400 21,841
Cityscape 2016 25 x 10° 2,000 x 1000 30
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“Quantity has a Quality All Its Own."”

(Thomas A. Callaghan Jr.)
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Implementing a deep network, PyTorch

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success

Deep-learning development is usually done in a framework:

Language(s) License Main backer
PyTorch Python BSD Facebook
Caffe2 C++4, Python Apache Facebook
TensorFlow Python, C++ Apache Google
MXNet Python, C4++, R, Scala Apache Amazon
CNTK Python, C++ MIT Microsoft
Torch Lua BSD Facebook
Theano Python BSD U. of Montreal
Caffe CH++ BSD 2 clauses U. of CA, Berkeley

A fast, low-level, compiled backend to access computation devices, combined

with a slow, high-level, interpreted language.
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We will use the PyTorch framework for our experiments.

O PyTorch

http://pytorch.org

“PyTorch is a python package that provides two high-level features:

e Tensor computation (like numpy) with strong GPU acceleration

e Deep Neural Networks built on a tape-based autograd system

You can reuse your favorite python packages such as numpy, scipy and Cython to

extend PyTorch when needed.”

CAS — Deep learning / 1.2. Current applications and success
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28 x 28 grayscale images, 60k train samples, 10k test samples.
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(leCun et al., 1998)
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http://pytorch.org

model = nn.Sequential(
nn.Conv2d( 1, 32, 5), nn.MaxPool2d(3), nn.ReLU(),
nn.Conv2d (32, 64, 5), nn.MaxPool2d(2), nn.ReLU(Q),
Flattener(),
nn.Linear (256, 200), nn.ReLU(Q),
nn.Linear (200, 10)

nb_epochs, batch_size = 10, 100
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), 1lr = 0.1)

model.to(device)
criterion.to(device)
train_input, train_target = train_input.to(device), train_target.to(device)

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu) .div_(std)

for e in range(nb_epochs):
for input, target in zip(train_input.split(batch_size),
train_target.split(batch_size)):

output = model (input)

loss = criterion(output, target)
optimizer.zero_grad()

loss.backward()

optimizer.step()

~7s on a GTX1080, ~1% test error
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1.4. Tensor basics and linear regression
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A tensor is a generalized matrix, a finite table of numerical values indexed along
several discrete dimensions.

A 0d tensor is a scalar,

A 1d tensor is a vector (e.g. a sound sample),

A 2d tensor is a matrix (e.g. a grayscale image),

A 3d tensor can be seen as a vector of identically sized matrix (e.g. a
multi-channel image),

A 4d tensor can be seen as a matrix of identically sized matrix, or a
sequence of 3d tensors (e.g. a sequence of multi-channel images),

e etc.

Tensors are used to encode the signal to process, but also the internal states
and parameters of models.

Manipulating data through this constrained structure allows to use CPUs
and GPUs at peak performance.

Compounded data structures can represent more diverse data types.
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PyTorch is a Python library built on top of Torch’s THNN computational
backend.

Its main features are:

Efficient tensor operations on CPU/GPU,

automatic on-the-fly differentiation (autograd),

optimizers,

data 1/0.

“Efficient tensor operations” encompass both standard linear algebra and, as we
will see later, deep-learning specific operations (convolution, pooling, etc.)

A key specificity of PyTorch is the central role of autograd to compute
derivatives of anything! We will come back to this.
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>>> x = torch.empty(2, 5)

>>> x.size()

torch.Size([2, 5])

>>> x.fill_(1.125)

tensor ([[ 1.1250, 1.1250, 1.1250, 1.1250, 1.1250],
[ 1.1250, 1.1250, 1.1250, 1.1250, 1.1250]1)

>>> x.mean()

tensor(1.1250)

>>> x.std()

tensor(0.)

>>> x.sum()

tensor(11.2500)

>>> x.sum() .item()

11.25

In-place operations are suffixed with an underscore, and a 0d tensor can be
converted back to a Python scalar with item().

A Reading a coefficient also generates a 0d tensor.

>>> x = torch.tensor([[11., 12., 13.], [21., 22., 23.11)
>>> x[1, 2]
tensor(23.)

CAS — Deep learning / 1.4. Tensor basics and linear regression

PyTorch provides operators for component-wise and vector/matrix operations.

>>> x = torch.tensor([ 10., 20., 30.])
>>> y = torch.tensor([ 11., 21., 31.])
>>>x +y

tensor([ 21., 41., 61.])

>>> x * y

tensor ([ 110., 420., 930.])

>>> x*k*2

tensor([ 100., 400., 900.])
>>> m = torch.tensor([[ 0., O.,

>>> m.mv(x)

tensor([ 90., 40., 10.])
>>>m @ x

tensor([ 90., 40., 10.])

CAS — Deep learning / 1.4. Tensor basics and linear regression
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And as in numpy, the : symbol defines a range of values for an index and allows

to slice tensors.

>>> import torch

>>> x = torch.empty(2, 4).random_(10)

>>> x

tensor([[8., 1., 1., 3.1,
(7., 0., 7., 5.11)

>>> x[0]

tensor([8., 1., 1., 3.1)

>>> x[0, :]

tensor([8., 1., 1., 3.1)

>>> x[:, 0]

tensor([8., 7.])

>>> x[:, 1:3] = -1

>>> x

tensor([[ 8., -1., -1., 3.]
(7., -1., -1., 5.1

CAS — Deep learning / 1.4. Tensor basics and linear regression

PyTorch provides interfacing to standard linear operations, such as linear system

solving or Eigen-decomposition.

>>> y = torch.empty(3) .normal_()
>>> y
tensor ([ 0.0477, 0.8834, -1.5996])
>>> m = torch.empty(3, 3).normal_()
>>> q, _ = torch.gels(y, m)
>>> torch.mm(m, q)
tensor([[ 0.0477],

[ 0.8834],

[-1.5996]11)

CAS — Deep learning / 1.4. Tensor basics and linear regression
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Example: linear regression
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Given a list of points
(Xn,yn) ERXR, n=1,... N,
can we find the “best line”
f(x;a,b) =ax+ b
going “through the points”, e.g. minimizing the mean square error

N
1
argmin N Z (ax,, + b_yn)Z.
20 W=l )

Such a model would allow to predict the y associated to a new x, simply by
calculating f(x; a, b).

CAS — Deep learning / 1.4. Tensor basics and linear regression 55 / 189



Francois Fleuret

Francois Fleuret

bash> cat systolic-blood-pressure-vs-age.dat
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import torch, numpy

data = torch.tensor (numpy.loadtxt(’systolic-blood-pressure-vs-age.dat’))
nb_samples = data.size(0)

X, y = torch.empty(nb_samples, 2), torch.empty(nb_samples, 1)

x[:, 0] = datal:, 0]

x[:, 1] =1

y[:, 0] = datal:, 1]

alpha, _ = torch.gels(y, x)

a, b = alphal[0, 0].item(), alphal[l, 0].item()
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1.5. High dimension tensors
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A tensor can be of several types:

e torch.float16, torch.float32, torch.float64,
e torch.uint8,

e torch.int8, torch.int16, torch.int32, torch.int64

and can be located either in the CPU’s or in a GPU's memory.

Operations with tensors stored in a certain device's memory are done by that
device. We will come back to that later.
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>>> x = torch.zeros(1, 3)

>>> x.dtype, x.device

(torch.float32, device(type=’cpu’))

>>> x = x.long()

>>> x.dtype, x.device

(torch.int64, device(type=’cpu’))

>>> x = x.to(’cuda’)

>>> x.dtype, x.device

(torch.int64, device(type=’cuda’, index=0))

CAS — Deep learning / 1.5. High dimension tensors

2d tensor (e.g. grayscale image)

[-> o]

[, 0]
S
> j
. . .

4d tensor (e.g. sequence of rgb images)
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3d tensor (e.g. rgb image)

/'[', 5l

62 / 189

63 / 189



Francois Fleuret

Francois Fleuret

Here are some examples from the vast library of tensor operations:

Creation
® torch
® torch.
® torch.
® torch.
® torch
® torch

.empty (*size, ...)

zeros (*size, ...)
full(size, value, ...)

tensor (sequence, ...)

.eye(n, ...)

.from numpy (ndarray)

Indexing, Slicing, Joining, Mutating

® torch.
® torch.
® torch.
® torch.
® torch
® torch.

® torch.

Filling

Tensor.view(*size)
cat(inputs, dimension=0)
chunk (tensor, chunks, dim=0) [source]

split(tensor, split.size, dim=0) [source]

.index_select (input, dim, index, out=None)

t(input, out=None)

transpose(input, dim0O, dimi, out=None)

® Tensor.fill_(value)

® torch.

® torch.

bernoulli_(proba)

normal_([mu, [std]])
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Pointwise math

® torch.
® torch.
® torch.

® torch.

abs (input, out=None)
add ()
cos(input, out=None)

sigmoid(input, out=None)

® (+ many operators)

Math reduction

® torch.
® torch.
® torch.
® torch.

® torch.

BLAS an

® torch.
® torch.
® torch.
® torch.

® torch.

dist(input, other, p=2, out=None)
mean ()

norm()

std()

sum()

d LAPACK Operations

eig(a, eigenvectors=False, out=None)
gels(B, A, out=None)

inverse(input, out=None)

mm(matl, mat2, out=None)

mv(mat, vec, out=None)
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x = torch.tensor ([

x.tQ)

x.view(-1)

X. view(S -1)
IIIII

x.narrow(1l, 1, 2)

x.view(l, 2, 3).expand(3, 2, 3)
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x.narrow(0, O,
IIIIIIIIIIIIIII
x.narrow(2, 0, 2) x.transpose(0, 1)

x.transpose(l, 2)

x.transpose(0, 2)
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PyTorch offers simple interfaces to standard image data-bases.

import torch, torchvision

cifar = torchvision.datasets.CIFAR10(’./cifar10/’, train = True, download = True)
x = torch.from_numpy(cifar.train_data).transpose(l, 3).transpose(2, 3).float()

x =x / 255

print(x.type(), x.size(), x.min().item(), x.max().item())

prints

Files already downloaded and verified
torch.FloatTensor torch.Size([50000, 3, 32, 32]) 0.0 1.0

[50,000, -, -, ]

NN

[32)
— =
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# Narrows to the first images, converts to float
x = x.narrow(0, 0, 48).float()

# Saves these samples as a single image
torchvision.utils.save_image(x, ’cifar-4x12.png’, nrow = 12)

CAS — Deep learning / 1.5. High dimension tensors
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# Switches the row and column indexes
x.transpose_(2, 3)
torchvision.utils.save_image(x, ’cifar-4x12-rotated.png’, nrow = 12)

R
R L

AR
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# Kills the green and blue channels
x.narrow(1l, 1, 2).fill_(0)
torchvision.utils.save_image(x, ’cifar-4x12-rotated-and-red.png’, nrow = 12)

Frangois Fleuret CAS — Deep learning / 1.5. High dimension tensors 71 /189



Broadcasting
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Broadcasting automagically expands dimensions by replicating coefficients,
when it is necessary to perform operations that are “intuitively reasonable”.

For instance:

>>> x = torch.empty(100, 4).normal_(2)

>>> x.mean(0)

tensor([2.0476, 2.0133, 1.9109, 1.8588])

>>> x -= x.mean(0) # This should not work!

>>> x.mean(0)

tensor([-4.0531e-08, -4.4703e-07, -1.3471e-07, 3.5763e-09])
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Precisely, broadcasting proceeds as follows:

1. If one of the tensors has fewer dimensions than the other, it is reshaped by
adding as many dimensions of size 1 as necessary in the front; then

2. for every dimension mismatch, if one of the two tensors is of size one, it
is expanded along this axis by replicating coefficients.

If there is a tensor size mismatch for one of the dimension and neither of them
is one, the operation fails.
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A = torch.tensor([[1.], [2.]1, [3.]1, [4.11)
B = torch.tensor([[5., -5., 5., -5., 5.11)
C=A+B
S e
1 11111
2 N | 2 2 2 2 2
r g
3
> > > > > 6 41 6 41 6
4 40alala)a \ 3 3
7 |— 7 |— 7
A
8 |—2| 8 |—2| 8
5|—-5| 5 |-5|5
5|-5/5|-5|5 > C=A+B
51-5|5|-5|5
B
51-5|5|-5|5
Broadcasted
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2.1. Loss and risk
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The general objective of machine learning is to capture regularity in data to
make predictions.

In our regression example, we modeled age and blood pressure as being linearly
related, to predict the latter from the former.

There are multiple types of inference that we can roughly split into three
categories:

o Classification (e.g. object recognition, cancer detection, speech
processing),

o regression (e.g. customer satisfaction, stock prediction, epidemiology), and

o density estimation (e.g. outlier detection, data visualization,
sampling/synthesis).
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The standard formalization considers a measure of probability
ux,y
over the observation/value of interest, and i.i.d. training samples

(Xnyyn), n=1,...,N.

CAS — Deep learning / 2.1. Loss and risk 78 / 189

Intuitively, for classification it can often be interpreted as

px,y (X, y) = pxjy=y(x) P(Y = y)

that is, draw Y first, and given its value, generate X.

Here
HX|Y=y

stands for the population of the observable signal for class y (e.g. “sound of an
/&/", “image of a cat”).
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For regression, one would interpret the joint law more naturally as

px,y(x,y) = ,uv|x:x()/) px (x)

which would be: first, generate X, and given its value, generate Y.

In the simple cases
Y =Ff(X)+e

where f is the deterministic dependency between x and y, and € is a random
noise, independent of X.
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With such a model, we can more precisely define the three types of inferences
we introduced before:

Classification,

e (X, Y) random variables on Z = RP x {1,..., C},

 we want to estimate argmax, P(Y =y | X = x).

Regression,

(X, Y) random variables on Z = RP x R,

e we want to estimate E(Y | X = x).

Density estimation,

e X random variable on Z = RP,

e we want to estimate ux.
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The boundaries between these categories are fuzzy:

e Regression allows to do classification through class scores.

e Density models allow to do classification thanks to Bayes' law.

etc.
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We call generative classification methods with an explicit data model, and
discriminative the ones bypassing such a modeling .

Example: Can we predict a Brazilian basketball player's gender G from his/her
height H?

Females:

Males:

190 182 188 184 196 173 180 193 179 186 185 169
192 190 183 199 200 190 195 184 190 203 205 201
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In the generative approach, we model pyjg—g(h)

! I

Males =
Females

140 160 180

200 220

PH|G—g(h)P(G=¢g)

240

and use Bayes's law P(G =g | H=h) = -
wH(h)
1 T T T
0.8 4
0.6 4
04 R
0.2 g
189.23
01 40 160 180 200 220
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240

In the discriminative approach we directly pick the threshold that works the

best on the data:

187.5

140 160 180

Note that it is harder to design a confidence indicator.

200 220
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Risk, empirical risk
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Learning consists of finding in a set & of functionals a “good” * (or its
parameters’ values) usually defined through a loss

 FXZE—-R

such that #(f, z) increases with how wrong f is on z. For instance

e for classification:
f(f’ (Xay)) = l{f(x)yéy]n

o for regression:
£(f,(x,y)) = (f(x) = y)?,

o for density estimation:

2(q,z) = —log q(z).

The loss may include additional terms related to f itself.
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We are looking for an f with a small expected risk
R(f) = Ez (¢(f, 2)),
which means that our learning procedure would ideally choose

f* = argmin R(f).

feF

Although this quantity is unknown, if we have i.i.d. training samples
9 ={2,...,2Zn},

we can compute an estimate, the empirical risk:

N
R(f; D) =g (¢(f,2)) = % > O(f, Zy).
n=1
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We have

N
Ez. .. zy (R’(f;@)) = [Ez, ..z (%Zﬂﬂ%))

n=1
1 N
= N Z ]EZn (f(f7 Zn))
n=1
1 N
= S Ez(4(F,2))
n=1

= [Ez (f(fa Z))
—  R(f).

The empirical risk is an unbiased estimator of the expected risk.
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Finally, given 9, #, and 7, “learning” aims at computing

f* = argmin R(f; D).
feF

« Can we bound R(f) with R(f; 2)?

Yes if f is not chosen using 9. Since the Z, are independent, we just need
to take into account the variance of R(f;92).

o Can we bound R(f*) with R(f*;2)?
A Unfortunately not simply, and not without additional constraints on &.

For instance if |#| = 1, we can!
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Note that in practice, we call “loss” both the functional
. FXxZ =R

and the empirical risk minimized during training

1 N
Z(f) =+ > e(f, zn).
n=1
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2.2. Over and under fitting
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You want to hire someone, and you evaluate candidates by asking them ten
technical yes/no questions.

Would you feel confident if you interviewed one candidate and he makes a
perfect score?

What about interviewing ten candidates and picking the best? What about
interviewing one thousand?
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With
Qy ~ %(0.5), n=1,...,1000, k =1,...,10,

independent standing for “candidate n answere question k correctly”, we have

1
Vn, P(Vk,Ql =1) = ——
n, Pk Qi =1) = 1552

and

P(3n,Vk, Q = 1) ~ 0.62.

So there is 62% chance that among 1,000 candidates answering completely at
random, one will score perfectly.

Selecting a candidate based on a statistical estimator biases the said
estimator for that candidate. And you need a greater number of “competence
checks” if you have a larger pool of candidates.
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Over and under-fitting, capacity. K-nearest-neighbors
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A simple classification procedure is the “K-nearest neighbors.”

Given
(xn,yn) €ERP x {1,...,C}, n=1,...,N

to predict the y associated to a new x, take the y, of the closest x;:
n*(x) = argmin|/x, — x||
n

f*(X) = Ynx(x)-

This recipe corresponds to K = 1, and makes the empirical training error zero.
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Under mild assumptions of regularities of p1x y, for N — oo the asymptotic
error rate of the 1-NN is less than twice the (optimal!) Bayes’ Error rate.

It can be made more stable by looking at the K > 1 closest training points, and
taking the majority vote.

If we let also K — oo “not too fast”, the error rate is the (optimal!) Bayes’
Error rate.
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Training set

Prediction (K=1)
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Training set

avV - 46 T
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A * «
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'Q
.

v
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s
A ’a ” \'m

Prediction (K=1)
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Training set

Votes (K=51)

Prediction (K=51)
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0.3 —

Votes (K=51)

Training set
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Prediction (K=51)

0.25 -

0.2

0.15 -

Error

0.1

0.05 -

Underfitting
-—

: : ,
Train

Test

Overfitting
—_—

1000

Francois Fleuret

100 10
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Over and under-fitting, capacity, polynomials
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Given a polynomial model

D
Vx,ap,...,ap €ER, f(x;a) = Zadxd.
d=0

and training points (xn,yn) € R2, n=1,..., N, the quadratic loss is

L(a) =) (f(xnia) = yn)’

n
0 D 2
l X7 ... X aQ vi
D
x,(\), S T ap YN

Hence, minimizing this loss is a standard quadratic problem, for which we have
efficient algorithms.
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X{ X{ o
argmin : : : —
- : ) :
x9 xP o
N - N D

def fit_polynomial(D, x, y):
X = torch.empty(x.size(0), D + 1)
for d in range(D + 1):
X[:, d] = x.pow(d)

# gels expects a matrix for target
Y = y.view(-1, 1)

# LAPACK’s GEneralized Least-Square
alpha, _ = torch.gels(Y, X)

return alphal[:D+1, 0]
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D, N =4, 100

x = torch.linspace(-math.pi, math.pi, N)
y = x.sin()

alpha = fit_polynomial(D, x, y)

X = torch.empty(N, D + 1)
for d in range(D + 1):

X[:, d] = x.pow(d)
yhat = X.mv(alpha)

for k in range(N):
print(x[k].item(), y[k].item(), yhat([k].item())
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34!
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We can use that model to illustrate how the prediction changes when we

increase the degree or the regularization.
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Train
Test

Error (MSE)

1 0_3 | | | | | | |
0 1 2 3 4 5 6 7 8 9
Degree
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We can visualize the influence of the noise by generating multiple training sets
D1, ..., Dpm with different noise, and training one model on each.
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Degree D=0 Degree D=1 Degree D=2 Degree D=3

Degree Ded. Degree D=5 Degree D=6 Degree D=7

Degree D=8 Degree D=9
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We can reformulate this control of the degree with a penalty

L(@) =) (Flxnia) = yn)* + ) la(ag)
d

n
where

ly(a) = 0 fd<Dora=0
dle) = 400 otherwise.

Such a penalty kills any term of degree > D.

This motivates the use of more subtle variants. For instance, to keep all this
quadratic

@)= (Foxnia) =y +p 3 .
n d
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We define the capacity of a set of predictors as its ability to model an arbitrary
functional. This is a vague definition, difficult to make formal.

A mathematically precise notion is the Vapnik—Chervonenkis dimension of a set
of functions, which, in the Binary classification case, is the cardinality of the
largest set that can be labeled arbitrarily (Vapnik, 1995).

It is a very powerful concept, but is poorly adapted to neural networks. We will
not say more about it in this course.
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Although the capacity is hard to define precisely, it is quite clear in practice how
to modulate it for a given class of models.

In particular one can control over-fitting either by

e Reducing the space # (less functionals, constrained or degraded
optimization), or

o Making the choice of 7* less dependent on data (penalty on coefficients,
margin maximization, ensemble methods).
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2.4. Proper evaluation protocols
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Learning algorithms, in particular deep-learning ones, require the tuning of many
meta-parameters.

These parameters have a strong impact on the performance, resulting in a
“meta” over-fitting through experiments.

We must be extra careful with performance estimation.

Running 100 times the same experiment on MNIST, with randomized weights,
we get:

Worst Median Best
1.3% 1.0% 0.82%
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The ideal development cycle is
Write code ——> Train ——> Test ——> Paper

or in practice something like

Write code ——> Train ——> Test ——> Paper

N

There may be over-fitting, but it does not bias the final performance evaluation.
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Unfortunately, it often looks like

ﬁ This should be avoided at all costs. The standard strategy is to have a
separate validation set for the tuning.

Write code ——> Train ——> Validation —> Test ——> Paper
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When data is scarce, one can use cross-validation: average through multiple
random splits of the data in a train and a validation sets.

There is no unbiased estimator of the variance of cross-validation valid under all
distributions (Bengio and Grandvalet, 2004).
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Some data-sets (MNIST!) have been used by thousands of researchers, over
millions of experiments, in hundreds of papers.

The global overall process looks more like
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“Cheating” in machine learning, from bad to “are you kidding?":

o “Early evaluation stopping”,

e meta-parameter (over-)tuning,

e data-set selection,

e algorithm data-set specific clauses,

e seed selection.

Top-tier conferences are demanding regarding experiments, and are biased
against “complicated” pipelines.

The community pushes toward accessible implementations, reference data-sets,
leader boards, and constant upgrades of benchmarks.
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3.1. The perceptron
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The first mathematical model for a neuron was the Threshold Logic Unit, with
Boolean inputs and outputs:

f(x) = l{wz, xj+b>0}"

It can in particular implement

or(u,v) = 1{,4v—05>0} (w=1,b=-0.5)
and(u, V) = 1{u+v—1.520} (W = 1, b= —15)
not(u) =1¢_,105>0 (w=-1,b=0.5)

Hence, any Boolean function can be build with such units.

(McCulloch and Pitts, 1943)
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The perceptron is very similar

1 if Z w;x;+b>0
f(x) = i
0 otherwise

but the inputs are real values and the weights can be different.

This model was originally motivated by biology, with w; being the synaptic
weights, and x; and f firing rates.

It is a (very) crude biological model.

(Rosenblatt, 1957)
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To make things simpler we take responses +1. Let

=] 1 i x>0
g - —1 otherwise.

—1

The perceptron classification rule boils down to
f(x) =o(w-x+ b).

For neural networks, the function o that follows a linear operator is called the
activation function.
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We can represent this “neuron” as follows:

Value
wi Parameter
T
X1 |f—————o X [ ]
I Operation

Ea
X
M
[ ]
WV
<
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We can also use tensor operations, as in

f(x) =o(w-x+ b).

T T
-

ol
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Given a training set
(Xn,yn) ERD X {_1, 1}’ n:l,...,N’
a very simple scheme to train such a linear operator for classification is the

perceptron algorithm:

1. Start with w® =0,
2. while 3ng s.t. yn, (Wk -xnk) <0, update wkt! = wk + y, xp, .

The bias b can be introduced as one of the ws by adding a constant component
to x equal to 1.

(Rosenblatt, 1957)
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def train_perceptron(x, y, nb_epochs_max):

W = torch.zeros(x

.size(1))

for e in range(nb_epochs_max):

nb_changes =

0

for i in range(x.size(0)):
if x[i].dot(w) * y[i] <= O:
w=w + y[i] * x[i]
nb_changes = nb_changes + 1
if nb_changes == 0: break;

return w

Francois Fleuret
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This crude algorithm works often surprisingly well. With MNIST’s “0"s as
negative class, and “1"s as positive one.

epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
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0 nb_changes
1 nb_changes
2 nb_changes
3 nb_changes
4 nb_changes
5 nb_changes
6 nb_changes
7 nb_changes
8 nb_changes

CAS -

64 train_error 0.23% test_error 0.197
24 train_error 0.07% test_error 0.00%
10 train_error 0.06% test_error 0.05%
6 train_error 0.03% test_error 0.14}
5 train_error 0.03), test_error 0.09%
4 train_error 0.02Y% test_error 0.14Y
3 train_error 0.01% test_error 0.14%
2 0.00% test_error 0.14Y
0 0.00% test_error 0.14J

train_error
train_error
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We can get a convergence result under two assumptions:

1. The x, are in a sphere of radius R:
JR >0, Vn, ||xn]| £ R.

2. The two populations can be separated with a margin v > 0.
Iw*, w* | =1, 3y >0, Vn, yn (0 - w*) > v/2.

Francois Fleuret CAS — Deep learning / 3.1. The perceptron

To prove the convergence, let us make the assumption that there still is a
is the weight vector updated with

misclassified sample at iteration k, and whktl

it. We have
Wk-l—l cwk — (Wk + ynank) cw*

=  wk.w* + Yn, (Xn, - W)

> wkowt 44/2

> (k+1)v/2.
Since

Iw l[w* || > w* - w*,

we get

2
Iwki2 > (wkew)

> k?~%/4.

Francois Fleuret CAS — Deep learning / 3.1. The perceptron

134 / 189

135 / 189



Francois Fleuret

Francois Fleuret

And

k+1)2
lw = =

IN

k1, k+1

w w

(Wk +_Ynank) : (Wk +_Vnank)

wk - wk 4 2 Yn, wk * Xny T+ ||X’7k||2
ﬁfo—/ ——

[w||> + R?

(k+1) R%.
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Putting these two results together, we get

hence

hence no misclassified sample can remain after L4R2/72J iterations.

This result makes sense:

e The bound does not change if the population is scaled, and

e the larger the margin, the more quickly the algorithm classifies all the

samples correctly.

Ky? /4 < [wh? < kR?

k <4R? /2,

CAS — Deep learning / 3.1. The perceptron

<R

136 / 189

137 / 189



The perceptron stops as soon as it finds a separating boundary.

Other algorithms maximize the distance of samples to the decision boundary,
which improves robustness to noise.

Support Vector Machines (SVM) achieve this by minimizing
1
L(w,b) = \|w|®+ = 0,1 — yn(w - xa + b)),
(w, b) = Alw]| +N;ma><( Yn(w - xn + b))

which is convex and has a global optimum.

Francois Fleuret CAS — Deep learning / 3.1. The perceptron 138 / 189

1
Z(w, b) = \||wl||® + N Z max(0,1 — yn(w - xn + b))

° Support vectors

Minimizing max(0,1 — y,(w - x, + b)) pushes the nth sample beyond the plane
W - x + b = yp, and minimizing ||w||? increases the distance between the

w-x+b==+1.

At convergence, only a small number of samples matter, the “support vectors”.
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The term
max(0,1 — «)

is the so called “hinge loss”
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3.3. Linear separability and feature design
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The main weakness of linear predictors is their lack of capacity. For
classification, the populations have to be linearly separable.
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The xor example can be solved by pre-processing the data to make the two
populations linearly separable.

D (xu, xv) = (Xuy Xv, XuXy).

(1,1,1)

/'205 1)/'2_1, 1) }?o,) /0)
0.0 1,0 “1(60.0) “T(1,0,0)
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® X + a%

Perceptron
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This is similar to the polynomial regression. If we have
d:x— (1,X,X2,...,XD)

and
a=(ag,...,ap)

then

D
Z agx?d = a - d(x).
d=0

By increasing D, we can approximate any continuous real function on a
compact space (Stone-Weierstrass theorem).

It means that we can make the capacity as high as we want.
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We can apply the same to a more realistic binary classification problem:
MNIST's “8" vs. the other classes with a perceptron.

The original 28 x 28 features are supplemented with the products of pairs of
features taken at random.

Train error
Test error

Error (%)

0 " PRI | " " " " " PRI |
103 10*
Nb. of features
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Remember the bias-variance tradeoff:
E((Y = y)?) = (BE(Y) — y)> + V(Y).
—_— =
Bias Variance
The right class of models reduces the bias more and increases the variance less.

Beside increasing capacity to reduce the bias, “feature design” may also be a
way of reducing capacity without hurting the bias, or with improving it.

In particular, good features should be invariant to perturbations of the signal
known to keep the value to predict unchanged.
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We can illustrate the use of features with k-NN on a task with radial symmetry.
Using the radius instead of 2d coordinates allows to cope with label noise.

Training points Votes (K=11) Prediction (K=11)

29

Using 2d coordinates

Using the radius
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A classical example is the “Histogram of Oriented Gradient” descriptors (HOG),
initially designed for person detection.

Roughly: divide the image in 8 X 8 blocks, compute in each the distribution of
edge orientations over 9 bins.

Dalal and Triggs (2005) combined them with a SVM, and Dollér et al. (2009)
extended them with other modalities into the “channel features”.
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Many methods (perceptron, SVM, k-means, PCA, etc.) only require to
compute k(x, x’) = ®(x) - (x’) for any (x, x").

So one needs to specify k alone, and may keep ® undefined.

This is the kernel trick, which we will not talk about in this course.
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Training a model composed of manually engineered features and a parametric
model such as logistic regression is now referred to as “shallow learning”.
The signal goes through a single processing trained from data.
151 / 189
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3.4. Multi-Layer Perceptrons
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So far we have seen linear classifiers of the form

RP SR
x — o(w - x+ b),

withw e RP beR, and o : R — R.

This can naturally be extended to a multi-dimension output by applying a
similar transformation to every output, which leads to

RP s R€

x — o(wx + b),

with w € R€XDP b € RC, and o is applied component-wise.
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Even though it has no practical value implementation-wise, we can represent
such a model as a combination of units, and extend it.

f(x; w, b)

w, b

Single unit

f(x; w, b)

WO 1 L@ 2 L0 H®)

Multiple layers of units
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This latter structure can be formally defined, with x(0) = x,
Vi=1,....L x)=¢ (w(’)x(’—l) + b(’))

and f(x; w, b) = x(1),

w®) p(1) w(b) pD

x(b) = f(x; w, b)

= x© |t x |+| IU\%NH—'“—X(L—U

Layer 1 Layer L

Such a model is a Multi-Layer Perceptron (MLP).
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Note that if o is an affine transformation, the full MLP is a composition of
affine mappings, and itself an affine mapping.

Consequently:

C The activation function o should be non-linear, or the resulting MLP
is an affine mapping with a peculiar parametrization.
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The two classical activation functions are the hyperbolic tangent

2
X — —1
1+ e 2

-1
and the rectified linear unit (ReLU)

x — max(0, x)
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Universal approximation
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We can approximate any 1 € €([a, b], R) with a linear combination of
translated/scaled ReLU functions.

f(X) = U(W1X+ bl) + O'(WQX + b2) -+ O'(W3X + b3) + ...

N/ N

This is true for other activation functions under mild assumptions.
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Extending this result to any ¢ € ([0, 1]°, R) requires a bit of work

First, we can use the previous result for the sin function
N,

VYA > 0,e >0, IN, (ap,an) ERXxR,n=1
.t. — <e.
s xeTla/)\(,A] sin(x) — Zancr x—ap)| <e
And the density of Fourier series provides
vy € €([0,1]P,R), 8 > 0,IM, (Vim, Ym, cm) ERP x Rx R, m =1 M,
M
s.t.  max X) — sin(vm - X + ¢ < 6.
i Srwte

CAS — Deep learning / 3.4. Multi-Layer Perceptrons
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So, V& > 0, with
6:§,A: max max |Vm-X+cm|, and €= &5
2 1<m<M xg[0,1]P 22 |Vim]

we get, Vx € [0,1]P,

M N
‘w(x) — Z Ym <Z ano(Vm - X + cm — a,,)> ‘
m=1 n=1

M
< |Y(x) — Z Ym Sin(Vm - X 4+ ¢cm)
m=1

-~

<

J/

N

N |

N

sin(Vm + X 4+ ¢m)

M
+ Z|7m|

m=1 n=1
€
_2Zm |’Ym|
N vg 7
<3
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So we can approximate any continuous function

¥ :0,1]°P - R

with a one hidden layer perceptron

where b € RK, w € RKXD,

x+— w-o(wx+ b),

and w € RKX,

X + m
L

Hidden layer

This is the universal approximation theorem.

ﬁ A better approximation requires a larger hidden layer (larger K), and
this theorem says nothing about the relation between the two.

17
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3.5. Gradient descent

CAS — Deep learning / 3.5. Gradient descent

162 / 189

163 / 189



We saw that training consists of finding the model parameters minimizing an
empirical risk or loss, for instance the mean-squared error (MSE)

Z(w, b) = L Z (f(xn; w, b) — yn)?.
N

Other losses are more fitting for classification, certain regression problems, or
density estimation. We will come back to this.

So far we minimized the loss either with an analytic solution for the MSE, or
with ad hoc recipes for the empirical error rate (k-NN and perceptron).
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There is generally no ad hoc method. The logistic regression for instance

1

Pu(Y=1| X =x)=0(w-x+b), with o(x) = ————
14+ e

leads to the loss

Z(w,b) = — Z log o(yn(w - xn + b))

which cannot be minimized analytically.

The general minimization method used in such a case is the gradient descent.
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Given a functional

f:RP 5 R
x+— f(x1,...,xp),
its gradient is the mapping
Vf:RP - RP
of of
1 (G 5 ()
X1 Oxp
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To minimize a functional
Z:RP 5 R

the gradient descent uses local linear information to iteratively move toward a
(local) minimum.

For wg € RP, consider an approximation of Z around wy
~ 1
Pun(W) = Z(wo) + VL (wo) T (W — wo) + %”W — .
Note that the chosen quadratic term does not depend on Z.

We have 1
VLw (W) =VL(wo) + E(W - wp),

which leads to B
argmin Ly, (w) = wyp — nVZ(wp).
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The resulting iterative rule, which goes to the minimum of the approximation at
the current location, takes the form:

which corresponds intuitively to “following the steepest descent”.

Wer1 = wy — VL (we),

This [most of the time] eventually ends up in a local minimum, and the choices
of wp and 7 are important.
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We saw that the minimum of the logistic regression loss
Z(w,b) = — Z log o(yn(w - xn + b))

does not have an analytic form.
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We can derive

0Z
a5 ; Yn U(—Yn(z - Xn + b)),
Un
0Z
vd, 8_Wd = - Zn: fn,d Yn U(_yivr(W “ Xn + b)z;
Vn,d

which can be implemented as

def gradient(x, y, w, b):
u=y * ( -y * (x.mv(w) + b)).sigmoid_Q)
v = x * u.view(-1, 1) # Broadcasting
return - v.sum(0), - u.sum()

and the gradient descent as

w, b = torch.empty(x.size(1)).normal_(), O
eta = le-1

for k in range(nb_iterations):
dw, db = gradient(x, y, w, b)
w -= eta * dw
b -= eta * db
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With 100 training points and n = 10~1.

n=20 n=10 n = 102

LDA
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n=103 n=10%

3.6. Back-propagation

Francois Fleuret CAS — Deep learning / 3.6. Back-propagation 177 / 189



We want to train an MLP by minimizing a loss over the training set

g(W, b) = Zf(f(xn; w, b)7yn)'

To use gradient descent, we need the expression of the gradient of the loss with
respect to the parameters:

0L 0%
and — .
o) ob!"

So, if we define £, = £(f(xn; w, b), yn), what we need is

¢ ¢
9t 9%

ow" op

N i
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For clarity, we consider a single training sample x, and introduce s1), ..., s(0)
as the summations before activation functions.

w® p2

w®)_p1) > >

Ty 22 D 5 kD) = f(x; w, b).

Formally we set x0 = x,

s() — WD x(=1) 4 p()
VI = 17 ) &=
x0) = g (s) |

and we set the output of the network as f(x; w, b) = x(1),

This is the forward pass.
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The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(gof) =(g"of)f

which generalizes to longer compositions and higher dimensions

N
Jtyoty_ro-0f () = [ [ I (fam1 0+ 0 fi(x)),
n=1

where J¢(x) is the Jacobian of f at x, that is the matrix of the linear
approximation of f in the neighborhood of x.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

What follows is exactly this principle applied to a MLP.
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(h ph (I+1) p(l+1)
S oy =y WBT () oy () v (1) oy (L) p

ANNANNNNANNNNN

We have / N (1 /
0= 3wl 40,
J
o) WI.(IJ.) influences £ only through sl.(l), and we get

ot ot 55,-(1) ot (1-1)

o)~ 05D gw 90T
Y] / 1,J) 1

and similarly

o or
o) as)’
Since we know x'' V) from the forward pass, we only need 8—’}.
J s
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w p (I+1) 1 (l+1)
AN (E LN () B () B AL SN (75 B NN (D BN

We have
xl.( ) = O'(S(I))
() ()

and since s;’ influences Z only through x; 7, the chain rule gives

or  or X" or (1)
85,.(1) a 8X,.(I) 85,.(1) B 8Xi(l) 7

Since we know s( ) from the forward pass, we only need aa(,)
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w ph WD) (D)
A G B LA (B (i (o SNSRI (O N

We know

ax.(L)

]

from the definition of 7, and V/ =1,...,L — 1, since

/+1 Z /+1 (l +b’+1

(!

and X; (I+1)

influences # only through the s, "™/, we have

a¢ a¢  asi Y o 1
= — w, .~.
8x,.(’) Eh: 85,(,’“) ax,.(’) 2}; 85,(7’“) h,i
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To write all this in tensorial form, if 1) : RV — RM  we will use the standard

Jacobian notation

0 O,

op1 | ™

x| : K : ’
oYy Oy
Bxl 8XN

and if ¢ : RV*M _ R we will use the compact notation, also tensorial

o o
ow 1 T owy, m
oY . , .
ow - : -
oY oY
8WN71 e 8WN,M

A standard notation (that we do not use here) is

ot ot ot
} = Vol {—] = V€ [{—ﬂ = V,n?.

or Y
- — / P
ax( 07 as) ab( aw(D
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/ [ or / lol4
wl?) | w( b [ab(/) ]
/" /]\ N
f : T
LU= |} X | + | > s |k @ >|xh
L L
\ o
Bf T 1 af 1 Bf
[8x(l_1)] < X ' [asm] < © ' [axm]
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Forward pass

Compute the activations.

s() = w(Dx(=1) 4 p()
1
SRR RV () J (s)
Backward pass

Compute the derivatives of the loss wrt the activations.

or .
from the definition of #
[axm] rom the definition © { o¢ } _ { o¢ } o o (s<’))

ifl < L, [l] — (W(/+1))T [33/{1)} sl ax()

Compute the derivatives of the loss wrt the parameters.
ow() ] — [as) ob os()
Gradient step

Update the parameters.

ot ot
(N (n _ = () (n _ -
w'\ — w n[{aw(/)ﬂ b\ «~— b n{ab(’)}
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In spite of its hairy formalization, the backward pass is a simple algorithm:
apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy
computation is concentrated in linear operations, and all the non-linearities go
into component-wise operations.
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Regarding computation, since the costly operation for the forward pass is

s(N — (D5 (1=1) + p)
and for the backward

" o¢ T[ o
_ (I+1)
ax(/)} - (W ) {as(m)}

ot ot T
_ (1-1)
L?w(’)]] - {as(/)} (X ) ’

the rule of thumb is that the backward pass is twice more expensive than the
forward one.

and
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