CAS — Ifl — Deep Learning

Francois Fleuret

Course content:

Machine learning basics.

Multi-layer perceptron, convolutions, gradient descent.
Graphs of tensor operators, autograd.

Deep-learning specific techniques.

Computer-vision, generative models, a bit of NLP.

CAS — Deep learning

1. Tensors and multi-layer perceptrons

Francois Fleuret
https://www.idiap.ch/~fleuret/
Fri Feb 22 13:18:05 UTC 2019

ZelCI30D AP

sssssssssssssss FEDERALE DE LAUSANNF

https://www.idiap.ch/~fleuret/

1.1. From neural networks to deep learning

Frangois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 2 /189

Many applications require the automatic extraction of “refined” information
from raw signal (e.g. image recognition, automatic speech processing, natural
language processing, robotic control, geometry reconstruction).

(ImageNet)

Francois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 3/189

Our brain is so good at interpreting visual information that the “semantic gap”
is hard to assess intuitively.

This ﬁ is a horse

CAS — Deep learning / 1.1. From neural networks to deep learning 4 /189

>>> from torchvision.datasets import CIFAR10
>>> cifar = CIFAR10(’./data/cifar10/’, train=True, download=True)
Files already downloaded and verified
>>> x = torch.from_numpy(cifar.train_data) [43].transpose(2, 0).transpose(l, 2)
>>> x[:, :4, :8]
tensor([[[99, 98, 100, 103, 105, 107, 108, 110],
[100, 100, 102, 105, 107, 109, 110, 112],
[104, 104, 106, 109, 111, 112, 114, 116],
[109, 109, 111, 113, 116, 117, 118, 120]],

[[166, 165, 167, 169, 171, 172, 173, 175],
[166, 164, 167, 169, 169, 171, 172, 174],
[169, 167, 170, 171, 171, 173, 174, 176],
[170, 169, 172, 173, 175, 176, 177, 178]1],

[[198, 196, 199, 200, 200, 202, 203, 204],
[195, 194, 197, 197, 197, 199, 200, 201],
[197, 195, 198, 198, 198, 199, 201, 202],
[197, 196, 199, 198, 198, 199, 200, 201]1]], dtype=torch.uint8)

CAS — Deep learning / 1.1. From neural networks to deep learning 5 /189

Extracting semantic automatically requires models of extreme complexity, which
cannot be designed by hand.

Techniques used in practice consist of

1. defining a parametric model, and

2. optimizing its parameters by “making it work” on training data.

This is similar to biological systems for which the model (e.g. brain structure) is
DNA-encoded, and parameters (e.g. synaptic weights) are tuned through
experiences.

Deep learning encompasses software technologies to scale-up to billions of
model parameters and as many training examples.

Frangois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 6 /189

There are strong connections between standard statistical modeling and
machine learning.

Classical ML methods combine a “learnable” model from statistics (e.g. “linear
regression”) with prior knowledge in pre-processing.

“Artificial neural networks” pre-dated these approaches, and do not follow that
dichotomy. They consist of “deep” stacks of parametrized processing.

Frangois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 7 /189

From artificial neural networks to “Deep Learning”

Frangois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 8 /189
c M‘
° 4_j<}-s ‘
<} >4 4_\
=
< F. =+ w
@
9 i
e Y,
<j M—
Networks of “Threshold Logic Unit”
(McCulloch and Pitts, 1943)
9 /189

Frangois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning

1949 — Donald Hebb proposes the Hebbian Learning principle.
1951 — Marvin Minsky creates the first ANN (Hebbian learning, 40 neurons).
1958 — Frank Rosenblatt creates a perceptron to classify 20 x 20 images.

1959 — David H. Hubel and Torsten Wiesel demonstrate orientation selectivity and
columnar organization in the cat’s visual cortex.

1982 — Paul Werbos proposes back-propagation for ANNSs.

Frangois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 10 / 189

Neocognitron

\

)‘4\%\\
&
|

=
' ! I L
- F,,\/ sﬁ :g;%k Ko
k=K e = L= =

Follows Hubel and Wiesel's results.

!

(Fukushima, 1980)

Frangois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 11 / 189

Network for the T-C problem

Output
Unit

\E [
o Hidden
eo Units

o0

o\c O

| o o
\ Input
Units

Trained with back-prop.

(Rumelhart et al., 1988)

Frangois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 12 / 189

LeNet-5

C3: f. maps 16@10x10
C1.: feature maps S4: f. maps 16@5x5

INPUT
30%32 6@28x28

S2: f. maps
6@14x14

Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

(leCun et al., 1998)

Francois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 13 / 189

Francois Fleuret

Francois Fleuret

S'Eride

of 4

48

AlexNet

- |
i¥E] 204 2048 \dense
13
13 dense dense)
1000
128 Max Jomt L
Max 8 Max pooling “ 2048
pooling pooling

(Krizhevsky et al., 2012)

CAS — Deep learning / 1.1. From neural networks to deep learning

GoogleNet

CAS — Deep learning / 1.1. From neural networks to deep learning

(Szegedy et al., 2015)

14 / 189

15 / 189

Resnet

(He et al., 2015)

Frangois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 16 / 189

Deep learning is built on a natural generalization of a neural network: a graph
of tensor operators, taking advantage of

the chain rule (aka “back-propagation”),

stochastic gradient decent,

convolutions,

parallel operations on GPUs.

This does not differ much from networks from the 90s

Frangois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 17 / 189

This generalization allows to design complex networks of operators dealing with
images, sound, text, sequences, etc. and to train them end-to-end.

S
|wSM!mll k‘/
R:nl(ing
C& el - &) f
‘ LSTM LSTM |-~ LSTM | N u W
—.—| LSTM l—-l LSTM l——l LSTM }» a| LST™M | ‘[l :jencn Emtad;;i | “-.- |
f i f <
| w.s, w,s, o oo 7—~—T| ws, | [ws | o [wes] '.'.':L‘l? i
Word are we(ght! Word Embedding Ln')
\ b ‘o
f f i oo om iy
| ‘?l | | si | ‘ sD1 | h“ P(s,) ‘ | PIS,) | o | PiSp.) ” Similarity Matrix
A
_.| | Ranking Model
Sentence S

Language Model

A\
H 's'}uulu —
Input 3 Z Feature fct=llc=s
Image |
Image Model
(Yeung et al., 2015)
Frangois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 18 / 189

CIFAR10

Gt
Hﬂﬂﬂg.lliﬂﬂ
ST TRV, P

32 x 32 color images, 50k train samples, 10k test samples.

(Krizhevsky, 2009, chap. 3)

Francois Fleuret CAS — Deep learning / 1.1. From neural networks to deep learning 19 / 189

100

95

L 9

>

O

o

35

o
80
75

Francois Fleuret

Performance on CIFAR10

T T T T
Real et al. (2018)

Graham (2015)

Human performance

Krizhevsky et al. (2012)

2012 2014 2016 2018
Year

CAS — Deep learning / 1.1. From neural networks to deep learning

ImageNet Large Scale Visual Recognition Challenge.

Francois Fleuret

xS
%@Iﬂa@l

1000 categories, > 1M images

(http://image-net.org/challenges/LSVRC /2014 /browse-synsets)

CAS — Deep learning / 1.1. From neural networks to deep learning

o ¢ [| Wpall #l7e
EIN™Ga M
wANTEFAGE
WIEEIII

20 / 189

21 /189

Francois Fleuret

Francois Fleuret

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.43"
GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

method

top-5 err. (test)

VGG [41] ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’ 14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

CAS — Deep learning / 1.1. From neural networks to deep learning

CAS — Deep learning / 1.2. Current applications and success

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except T reported on the test set).

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

(He et al., 2015)

1.2. Current applications and success

22 / 189

23 / 189

Object detection and segmentation

(Pinheiro et al., 2016)

Frangois Fleuret CAS — Deep learning / 1.2. Current applications and success 24 /189

Human pose estimation

FLIC

(Wei et al., 2016)

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success 25 /189

Reinforcement learning

Self-trained, plays 49 games at human level.

(Mnih et al., 2015)

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success 26 / 189

Strategy games

ALPHAGO '@ S A
(e g 4 * LEE SEDOL
00:10:29 b . 00:01:00

AlphaGo

Google DeepMind

March 2016, 4-1 against a 9-dan professional without handicap.

(Silver et al., 2016)

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success 27 / 189

Translation

“The reason Boeing are doing this is to cram more seats in to make their plane
more competitive with our products,” said Kevin Keniston, head of passenger
comfort at Europe's Airbus.

“La raison pour laquelle Boeing fait cela est de créer plus de siéges pour rendre
=> son avion plus compétitif avec nos produits”, a déclaré Kevin Keniston, chef
du confort des passagers chez Airbus.

When asked about this, an official of the American administration replied:
“The United States is not conducting electronic surveillance aimed at offices
of the World Bank and IMF in Washington.”

Interrogé a ce sujet, un fonctionnaire de I'administration américaine a répondu:
=> ‘“Les Etats-Unis n'effectuent pas de surveillance électronique a l'intention des
bureaux de la Banque mondiale et du FMI a Washington”

(Wu et al., 2016)

Frangois Fleuret CAS — Deep learning / 1.2. Current applications and success 28 / 189

Auto-captioning

A person riding a Two dogs play in the grass.
motercycle on a dirt road.

A group of young people
playing a game of frisbee

Two hockey players are
_fighting over the puck.

A close up of a cat laying
on a couch.

(Vinyals et al., 2015)

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success 29 /189

Question answering

Jane went to the hallway.

Mary walked to the bathroom.
Sandra went to the garden.
Daniel went back to the garden.
Sandra took the milk there.
Where is the milk?

garden

=0 HHHHH

-

It started boring, but then it got interesting.
What’s the sentiment?
positive

= 0

(Kumar et al., 2015)

Frangois Fleuret CAS — Deep learning / 1.2. Current applications and success 30/ 189

Image generation

(Brock et al., 2018)

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success 31 /189

Text generation

System Prompt (human-written)

In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes

Mountains. Even more surprising to the researchers was the fact that
the unicorns spoke perfect English.

Model Completion (machine-written, 10 tries)

The scientist named the population, after their distinctive horn,
Ovid’s Unicorn. These four-horned, silver-white unicorns were
previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La
Paz, and several companions, were exploring the Andes Mountains when
they found a small valley, with no other animals or humans. Pérez
noticed that the valley had what appeared to be a natural fountain,
surrounded by two peaks of rock and silver snow.

(Radford et al., 2019)

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success 32 /189

Why does it work now?

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success 33 /189

The success of deep learning is multi-factorial:

Five decades of research in machine learning,

CPUs/GPUs/storage developed for other purposes,

lots of data from ‘“the internet”,

tools and culture of collaborative and reproducible science,

resources and efforts from large corporations.

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success 34 /189

Five decades of research in ML provided

e a taxonomy of ML concepts (classification, generative models, clustering,
kernels, linear embeddings, etc.),

a sound statistical formalization (Bayesian estimation, PAC),

a clear picture of fundamental issues (bias/variance dilemma, VC
dimension, generalization bounds, etc.),

a good understanding of optimization issues,

efficient large-scale algorithms.

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success 35 /189

Francois Fleuret

Francois Fleuret

From a practical perspective, deep learning

e lessens the need for a deep mathematical grasp,

o makes the design of large learning architectures a system /software

development task,

o allows to leverage modern hardware (clusters of GPUs),

e does not plateau when using more data,

e makes large trained networks a commodity.

CAS — Deep learning / 1.2. Current applications and success

1012 T T T T T T T
°
°
100 F o i
°
2 108 L] 1
=l
g
g
L 0% .
°
100 | .
°
10_3 1 1 1 1 1 1 1
1960 1970 1980 1990 2000 2010 2020
(Wikipedia
TFlops (10%) Price GFlops per $
Intel i7-6700K 0.2 $344 0.6
AMD Radeon R-7 240 0.5 $55 9.1
NVIDIA GTX 750 Ti 1.3 $105 12.3
AMD RX 480 5.2 $239 21.6
NVIDIA GTX 1080 8.9 $699 12.7

CAS — Deep learning / 1.2. Current applications and success

“FLOPS™)

36 / 189

37 / 189

1012 T T T T T
o ,00°
o o°
°®

109 [y
o °
%]
2 .
8 °
8
& o°.

108 - B .

°
°®
°®
°
L)
108 1 1 1 1 1
1980 1990 2000 2010 2020

(John C. McCallum)

The typical cost of a 4Tb hard disk is $120 (Dec 2016).

Frangois Fleuret CAS — Deep learning / 1.2. Current applications and success 38 /189
Inception-v3‘ :
: ResNet-101
s fresterso@® T vees vest
.ResNet-34
R 701 'ajResNet-lS'
§ GooglLeNet
5
Y654
®
E}' ‘ BN-NIN
604 - ... 5M . 35M 65M - 95M 125M - 155M
BN-AlexNet
551 ' — AlexNet B U S
50 , : , , , : , :
0 5 10 15 20 25 30 35 40

Operations [G-Ops]
(Canziani et al., 2016)

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success 39 /189

Data-set Year Nb. images Resolution Nb. classes

MNIST 1998 6.0 x 10° 28 x 28 10
NORB 2004 4.8 x 10* 96 x 96 5
Caltech 101 2003 9.1 x 10° ~ 300 x 200 101
Caltech 256 2007 3.0 x 10* ~ 640 x 480 256
LFW 2007 1.3 x 10* 250 x 250 -
CIFAR10 2009 6.0 x 10 32 x 32 10
PASCAL VOC 2012 2.1 x 10* ~ 500 x 400 20
MS-COCO 2015 2.0 x 10° ~ 640 x 480 91
ImageNet 2016 14.2 x 10° ~ 500 x 400 21,841
Cityscape 2016 25 x 10° 2,000 x 1000 30

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success 40 / 189

“Quantity has a Quality All Its Own."”

(Thomas A. Callaghan Jr.)

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success 41 / 189

Implementing a deep network, PyTorch

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success

Deep-learning development is usually done in a framework:

Language(s) License Main backer
PyTorch Python BSD Facebook
Caffe2 C++4, Python Apache Facebook
TensorFlow Python, C++ Apache Google
MXNet Python, C4++, R, Scala Apache Amazon
CNTK Python, C++ MIT Microsoft
Torch Lua BSD Facebook
Theano Python BSD U. of Montreal
Caffe CH++ BSD 2 clauses U. of CA, Berkeley

A fast, low-level, compiled backend to access computation devices, combined

with a slow, high-level, interpreted language.

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success

42 /189

43 /189

Francois Fleuret

Francois Fleuret

We will use the PyTorch framework for our experiments.

O PyTorch

http://pytorch.org

“PyTorch is a python package that provides two high-level features:

e Tensor computation (like numpy) with strong GPU acceleration

e Deep Neural Networks built on a tape-based autograd system

You can reuse your favorite python packages such as numpy, scipy and Cython to

extend PyTorch when needed.”

CAS — Deep learning / 1.2. Current applications and success

MNIST data-set

\V/ 8§36 /7021001137
204728993071 020
F375809\V0=21223
©Cel7A4853*] | 44954
9390596574 (3404
87276097572/ 16%9Y
039632 20364365809
A3H PGl IRA87978B7 ¢
L34 9R) 54 T72%409
YR 94+RF7 L92A438 L\
MO 97/42432738670
Ve4S533 S5 (927444
5679457090663 9
G9¢ /8Nl 26!l 06230
4006 /2982205
S22l 582372003/ (20
RS ES7C/ F (7555
Q2772509007 2¢% /b
S405583¢232921/59
772724969 72¢281/73

SWNUYWSNSNDw el NN Wb
L= TR PRIdI NN ARIET T~ O
QUHNHRVLL G eI~ b Lo
NE~HArHOE{ 3 =P NVW LS

NRYRYHPWW KL eORO NN &W G G ¢

28 x 28 grayscale images, 60k train samples, 10k test samples.

CAS — Deep learning / 1.2. Current applications and success

(leCun et al., 1998)

44 /189

45 /189

http://pytorch.org

model = nn.Sequential(
nn.Conv2d(1, 32, 5), nn.MaxPool2d(3), nn.ReLU(),
nn.Conv2d (32, 64, 5), nn.MaxPool2d(2), nn.ReLU(Q),
Flattener(),
nn.Linear (256, 200), nn.ReLU(Q),
nn.Linear (200, 10)

nb_epochs, batch_size = 10, 100
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), 1lr = 0.1)

model.to(device)
criterion.to(device)
train_input, train_target = train_input.to(device), train_target.to(device)

mu, std = train_input.mean(), train_input.std()
train_input.sub_(mu) .div_(std)

for e in range(nb_epochs):
for input, target in zip(train_input.split(batch_size),
train_target.split(batch_size)):

output = model (input)

loss = criterion(output, target)
optimizer.zero_grad()

loss.backward()

optimizer.step()

~7s on a GTX1080, ~1% test error

Francois Fleuret CAS — Deep learning / 1.2. Current applications and success 46 / 189

1.4. Tensor basics and linear regression

Frangois Fleuret CAS — Deep learning / 1.4. Tensor basics and linear regression 47 / 189

Francois Fleuret

Francois Fleuret

A tensor is a generalized matrix, a finite table of numerical values indexed along
several discrete dimensions.

A 0d tensor is a scalar,

A 1d tensor is a vector (e.g. a sound sample),

A 2d tensor is a matrix (e.g. a grayscale image),

A 3d tensor can be seen as a vector of identically sized matrix (e.g. a
multi-channel image),

A 4d tensor can be seen as a matrix of identically sized matrix, or a
sequence of 3d tensors (e.g. a sequence of multi-channel images),

e etc.

Tensors are used to encode the signal to process, but also the internal states
and parameters of models.

Manipulating data through this constrained structure allows to use CPUs
and GPUs at peak performance.

Compounded data structures can represent more diverse data types.

CAS — Deep learning / 1.4. Tensor basics and linear regression 48 / 189

PyTorch is a Python library built on top of Torch’s THNN computational
backend.

Its main features are:

Efficient tensor operations on CPU/GPU,

automatic on-the-fly differentiation (autograd),

optimizers,

data 1/0.

“Efficient tensor operations” encompass both standard linear algebra and, as we
will see later, deep-learning specific operations (convolution, pooling, etc.)

A key specificity of PyTorch is the central role of autograd to compute
derivatives of anything! We will come back to this.

CAS — Deep learning / 1.4. Tensor basics and linear regression 49 / 189

Francois Fleuret

Francois Fleuret

>>> x = torch.empty(2, 5)

>>> x.size()

torch.Size([2, 5])

>>> x.fill_(1.125)

tensor ([[1.1250, 1.1250, 1.1250, 1.1250, 1.1250],
[1.1250, 1.1250, 1.1250, 1.1250, 1.1250]1)

>>> x.mean()

tensor(1.1250)

>>> x.std()

tensor(0.)

>>> x.sum()

tensor(11.2500)

>>> x.sum() .item()

11.25

In-place operations are suffixed with an underscore, and a 0d tensor can be
converted back to a Python scalar with item().

A Reading a coefficient also generates a 0d tensor.

>>> x = torch.tensor([[11., 12., 13.], [21., 22., 23.11)
>>> x[1, 2]
tensor(23.)

CAS — Deep learning / 1.4. Tensor basics and linear regression

PyTorch provides operators for component-wise and vector/matrix operations.

>>> x = torch.tensor([10., 20., 30.])
>>> y = torch.tensor([11., 21., 31.])
>>>x +y

tensor([21., 41., 61.])

>>> x * y

tensor ([110., 420., 930.])

>>> x*k*2

tensor([100., 400., 900.])
>>> m = torch.tensor([[0., O.,

>>> m.mv(x)

tensor([90., 40., 10.])
>>>m @ x

tensor([90., 40., 10.])

CAS — Deep learning / 1.4. Tensor basics and linear regression

50 / 189

51 / 189

Francois Fleuret

Francois Fleuret

And as in numpy, the : symbol defines a range of values for an index and allows

to slice tensors.

>>> import torch

>>> x = torch.empty(2, 4).random_(10)

>>> x

tensor([[8., 1., 1., 3.1,
(7., 0., 7., 5.11)

>>> x[0]

tensor([8., 1., 1., 3.1)

>>> x[0, :]

tensor([8., 1., 1., 3.1)

>>> x[:, 0]

tensor([8., 7.])

>>> x[:, 1:3] = -1

>>> x

tensor([[8., -1., -1., 3.]
(7., -1., -1., 5.1

CAS — Deep learning / 1.4. Tensor basics and linear regression

PyTorch provides interfacing to standard linear operations, such as linear system

solving or Eigen-decomposition.

>>> y = torch.empty(3) .normal_()
>>> y
tensor ([0.0477, 0.8834, -1.5996])
>>> m = torch.empty(3, 3).normal_()
>>> q, _ = torch.gels(y, m)
>>> torch.mm(m, q)
tensor([[0.0477],

[0.8834],

[-1.5996]11)

CAS — Deep learning / 1.4. Tensor basics and linear regression

52 / 189

53 / 189

Francois Fleuret

Francois Fleuret

Example: linear regression

CAS — Deep learning / 1.4. Tensor basics and linear regression 54 / 189

Given a list of points
(Xn,yn) ERXR, n=1,... N,
can we find the “best line”
f(x;a,b) =ax+ b
going “through the points”, e.g. minimizing the mean square error

N
1
argmin N Z (ax,, + b_yn)Z.
20 W=l)

Such a model would allow to predict the y associated to a new x, simply by
calculating f(x; a, b).

CAS — Deep learning / 1.4. Tensor basics and linear regression 55 / 189

Francois Fleuret

Francois Fleuret

bash> cat systolic-blood-pressure-vs-age.dat

39
47
45
a7
65
46
67
42
67
56
64
56
59
34
42

/..

OYSI0IIC BIOOA rressure (MmmmHQg)

144
220
138
145
162
142
170
124
158
154
162
150
140
110
128

v

240

220

200

180

160

140

120

100

80

CAS — Deep learning / 1.4. Tensor basics and linear regression
I I I I I I
Data
- ° -
- . -
(]
- ° o (X] . _
(]
(]
° (]
° °
. . *
(] ° (]
] L4]
- ° ° -
° °
(]
| | | | | |
10 20 30 40 50 60 70

Age (years)

CAS — Deep learning / 1.4. Tensor basics and linear regression

80

56 / 189

57 / 189

X1 N x1 1.0 i

X2 Y2 x2 1.0 3 ¥2
S S < b) I
XN YN xy 1.0 a€R2X1 YN

dataeRNXQ XGRNXZ yeRNXI

import torch, numpy

data = torch.tensor (numpy.loadtxt(’systolic-blood-pressure-vs-age.dat’))
nb_samples = data.size(0)

X, y = torch.empty(nb_samples, 2), torch.empty(nb_samples, 1)

x[:, 0] = datal:, 0]

x[:, 1] =1

y[:, 0] = datal:, 1]

alpha, _ = torch.gels(y, x)

a, b = alphal[0, 0].item(), alphal[l, 0].item()

Frangois Fleuret CAS — Deep learning / 1.4. Tensor basics and linear regression 58 / 189

240 T T T T T T
Data °
ax + ph e—
220 . .
200 .
180 -]

160

140

120

OYSI0IIC BIOOA rressure (MmmmHQg)

100 .

80 L L L L L L
10 20 30 40 50 60 70 80

Age (years)

Frangois Fleuret CAS — Deep learning / 1.4. Tensor basics and linear regression 59 / 189

1.5. High dimension tensors

Frangois Fleuret CAS - Deep learning / 1.5. High dimension tensors 60 / 189

A tensor can be of several types:

e torch.float16, torch.float32, torch.float64,
e torch.uint8,

e torch.int8, torch.int16, torch.int32, torch.int64

and can be located either in the CPU’s or in a GPU's memory.

Operations with tensors stored in a certain device's memory are done by that
device. We will come back to that later.

Frangois Fleuret CAS — Deep learning / 1.5. High dimension tensors 61 / 189

Francois Fleuret

Francois Fleuret

>>> x = torch.zeros(1, 3)

>>> x.dtype, x.device

(torch.float32, device(type=’cpu’))

>>> x = x.long()

>>> x.dtype, x.device

(torch.int64, device(type=’cpu’))

>>> x = x.to(’cuda’)

>>> x.dtype, x.device

(torch.int64, device(type=’cuda’, index=0))

CAS — Deep learning / 1.5. High dimension tensors

2d tensor (e.g. grayscale image)

[-> o]

[, 0]
S
> j
. . .

4d tensor (e.g. sequence of rgb images)

CAS — Deep learning / 1.5. High dimension tensors

3d tensor (e.g. rgb image)

/'[', 5l

62 / 189

63 / 189

Francois Fleuret

Francois Fleuret

Here are some examples from the vast library of tensor operations:

Creation
® torch
® torch.
® torch.
® torch.
® torch
® torch

.empty (*size, ...)

zeros (*size, ...)
full(size, value, ...)

tensor (sequence, ...)

.eye(n, ...)

.from numpy (ndarray)

Indexing, Slicing, Joining, Mutating

® torch.
® torch.
® torch.
® torch.
® torch
® torch.

® torch.

Filling

Tensor.view(*size)
cat(inputs, dimension=0)
chunk (tensor, chunks, dim=0) [source]

split(tensor, split.size, dim=0) [source]

.index_select (input, dim, index, out=None)

t(input, out=None)

transpose(input, dim0O, dimi, out=None)

® Tensor.fill_(value)

® torch.

® torch.

bernoulli_(proba)

normal_([mu, [std]])

CAS — Deep learning / 1.5. High dimension tensors

Pointwise math

® torch.
® torch.
® torch.

® torch.

abs (input, out=None)
add ()
cos(input, out=None)

sigmoid(input, out=None)

® (+ many operators)

Math reduction

® torch.
® torch.
® torch.
® torch.

® torch.

BLAS an

® torch.
® torch.
® torch.
® torch.

® torch.

dist(input, other, p=2, out=None)
mean ()

norm()

std()

sum()

d LAPACK Operations

eig(a, eigenvectors=False, out=None)
gels(B, A, out=None)

inverse(input, out=None)

mm(matl, mat2, out=None)

mv(mat, vec, out=None)

CAS — Deep learning / 1.5. High dimension tensors

64 / 189

65 / 189

x = torch.tensor ([

x.tQ)

x.view(-1)

X. view(S -1)
IIIII

x.narrow(1l, 1, 2)

x.view(l, 2, 3).expand(3, 2, 3)

Frangois Fleuret CAS — Deep learning / 1.5. High dimension tensors 66 / 189

x.narrow(0, O,
IIIIIIIIIIIIIII
x.narrow(2, 0, 2) x.transpose(0, 1)

x.transpose(l, 2)

x.transpose(0, 2)

Francois Fleuret CAS — Deep learning / 1.5. High dimension tensors 67 / 189

Francois Fleuret

Francois Fleuret

PyTorch offers simple interfaces to standard image data-bases.

import torch, torchvision

cifar = torchvision.datasets.CIFAR10(’./cifar10/’, train = True, download = True)
x = torch.from_numpy(cifar.train_data).transpose(l, 3).transpose(2, 3).float()

x =x / 255

print(x.type(), x.size(), x.min().item(), x.max().item())

prints

Files already downloaded and verified
torch.FloatTensor torch.Size([50000, 3, 32, 32]) 0.0 1.0

[50,000, -, -,]

NN

[32)
— =

CAS — Deep learning / 1.5. High dimension tensors

Narrows to the first images, converts to float
x = x.narrow(0, 0, 48).float()

Saves these samples as a single image
torchvision.utils.save_image(x, ’cifar-4x12.png’, nrow = 12)

CAS — Deep learning / 1.5. High dimension tensors

68 / 189

69 / 189

Switches the row and column indexes
x.transpose_(2, 3)
torchvision.utils.save_image(x, ’cifar-4x12-rotated.png’, nrow = 12)

R
R L

AR

Frangois Fleuret CAS — Deep learning / 1.5. High dimension tensors 70 / 189

Kills the green and blue channels
x.narrow(1l, 1, 2).fill_(0)
torchvision.utils.save_image(x, ’cifar-4x12-rotated-and-red.png’, nrow = 12)

Frangois Fleuret CAS — Deep learning / 1.5. High dimension tensors 71 /189

Broadcasting

Frangois Fleuret CAS - Deep learning / 1.5. High dimension tensors 72 / 189

Broadcasting automagically expands dimensions by replicating coefficients,
when it is necessary to perform operations that are “intuitively reasonable”.

For instance:

>>> x = torch.empty(100, 4).normal_(2)

>>> x.mean(0)

tensor([2.0476, 2.0133, 1.9109, 1.8588])

>>> x -= x.mean(0) # This should not work!

>>> x.mean(0)

tensor([-4.0531e-08, -4.4703e-07, -1.3471e-07, 3.5763e-09])

Frangois Fleuret CAS - Deep learning / 1.5. High dimension tensors 73 /189

Precisely, broadcasting proceeds as follows:

1. If one of the tensors has fewer dimensions than the other, it is reshaped by
adding as many dimensions of size 1 as necessary in the front; then

2. for every dimension mismatch, if one of the two tensors is of size one, it
is expanded along this axis by replicating coefficients.

If there is a tensor size mismatch for one of the dimension and neither of them
is one, the operation fails.

Frangois Fleuret CAS — Deep learning / 1.5. High dimension tensors 74 / 189
A = torch.tensor([[1.], [2.]1, [3.]1, [4.11)
B = torch.tensor([[5., -5., 5., -5., 5.11)
C=A+B
S e
1 11111
2 N | 2 2 2 2 2
r g
3
> > > > > 6 41 6 41 6
4 40alala)a \ 3 3
7 |— 7 |— 7
A
8 |—2| 8 |—2| 8
5|—-5| 5 |-5|5
5|-5/5|-5|5 > C=A+B
51-5|5|-5|5
B
51-5|5|-5|5
Broadcasted

Frangois Fleuret CAS — Deep learning / 1.5. High dimension tensors 75 / 189

2.1. Loss and risk

Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk 76 / 189

The general objective of machine learning is to capture regularity in data to
make predictions.

In our regression example, we modeled age and blood pressure as being linearly
related, to predict the latter from the former.

There are multiple types of inference that we can roughly split into three
categories:

o Classification (e.g. object recognition, cancer detection, speech
processing),

o regression (e.g. customer satisfaction, stock prediction, epidemiology), and

o density estimation (e.g. outlier detection, data visualization,
sampling/synthesis).

Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk 77 / 189

Francois Fleuret

Francois Fleuret

The standard formalization considers a measure of probability
ux,y
over the observation/value of interest, and i.i.d. training samples

(Xnyyn), n=1,...,N.

CAS — Deep learning / 2.1. Loss and risk 78 / 189

Intuitively, for classification it can often be interpreted as

px,y (X, y) = pxjy=y(x) P(Y = y)

that is, draw Y first, and given its value, generate X.

Here
HX|Y=y

stands for the population of the observable signal for class y (e.g. “sound of an
/&/", “image of a cat”).

CAS — Deep learning / 2.1. Loss and risk 79 / 189

For regression, one would interpret the joint law more naturally as

px,y(x,y) = ,uv|x:x()/) px (x)

which would be: first, generate X, and given its value, generate Y.

In the simple cases
Y =Ff(X)+e

where f is the deterministic dependency between x and y, and € is a random
noise, independent of X.

Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk 80 / 189

With such a model, we can more precisely define the three types of inferences
we introduced before:

Classification,

e (X, Y) random variables on Z = RP x {1,..., C},

 we want to estimate argmax, P(Y =y | X = x).

Regression,

(X, Y) random variables on Z = RP x R,

e we want to estimate E(Y | X = x).

Density estimation,

e X random variable on Z = RP,

e we want to estimate ux.

Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk 81 / 189

The boundaries between these categories are fuzzy:

e Regression allows to do classification through class scores.

e Density models allow to do classification thanks to Bayes' law.

etc.

Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk 82 /189

We call generative classification methods with an explicit data model, and
discriminative the ones bypassing such a modeling .

Example: Can we predict a Brazilian basketball player's gender G from his/her
height H?

Females:

Males:

190 182 188 184 196 173 180 193 179 186 185 169
192 190 183 199 200 190 195 184 190 203 205 201

Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk 83 /189

In the generative approach, we model pyjg—g(h)

! I

Males =
Females

140 160 180

200 220

PH|G—g(h)P(G=¢g)

240

and use Bayes's law P(G =g | H=h) = -
wH(h)
1 T T T
0.8 4
0.6 4
04 R
0.2 g
189.23
01 40 160 180 200 220
Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk

240

In the discriminative approach we directly pick the threshold that works the

best on the data:

187.5

140 160 180

Note that it is harder to design a confidence indicator.

200 220

Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk

240

84 / 189

85 / 189

Risk, empirical risk

Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk 86 / 189

Learning consists of finding in a set & of functionals a “good” * (or its
parameters’ values) usually defined through a loss

 FXZE—-R

such that #(f, z) increases with how wrong f is on z. For instance

e for classification:
f(f’ (Xay)) = l{f(x)yéy]n

o for regression:
£(f,(x,y)) = (f(x) = y)?,

o for density estimation:

2(q,z) = —log q(z).

The loss may include additional terms related to f itself.

Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk 87 / 189

We are looking for an f with a small expected risk
R(f) = Ez (¢(f, 2)),
which means that our learning procedure would ideally choose

f* = argmin R(f).

feF

Although this quantity is unknown, if we have i.i.d. training samples
9 ={2,...,2Zn},

we can compute an estimate, the empirical risk:

N
R(f; D) =g (¢(f,2)) = % > O(f, Zy).
n=1

Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk 88 / 189

We have

N
Ez. .. zy (R’(f;@)) = [Ez, ..z (%Zﬂﬂ%))

n=1
1 N
= N Z]EZn (f(f7 Zn))
n=1
1 N
= S Ez(4(F,2))
n=1

= [Ez (f(fa Z))
— R(f).

The empirical risk is an unbiased estimator of the expected risk.

Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk 89 / 189

Finally, given 9, #, and 7, “learning” aims at computing

f* = argmin R(f; D).
feF

« Can we bound R(f) with R(f; 2)?

Yes if f is not chosen using 9. Since the Z, are independent, we just need
to take into account the variance of R(f;92).

o Can we bound R(f*) with R(f*;2)?
A Unfortunately not simply, and not without additional constraints on &.

For instance if |#| = 1, we can!

Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk 90 / 189

Note that in practice, we call “loss” both the functional
. FXxZ =R

and the empirical risk minimized during training

1 N
Z(f) =+ > e(f, zn).
n=1

Frangois Fleuret CAS — Deep learning / 2.1. Loss and risk 91 / 189

2.2. Over and under fitting

Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting 92 / 189

You want to hire someone, and you evaluate candidates by asking them ten
technical yes/no questions.

Would you feel confident if you interviewed one candidate and he makes a
perfect score?

What about interviewing ten candidates and picking the best? What about
interviewing one thousand?

Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting 93 / 189

With
Qy ~ %(0.5), n=1,...,1000, k =1,...,10,

independent standing for “candidate n answere question k correctly”, we have

1
Vn, P(Vk,Ql =1) = ——
n, Pk Qi =1) = 1552

and

P(3n,Vk, Q = 1) ~ 0.62.

So there is 62% chance that among 1,000 candidates answering completely at
random, one will score perfectly.

Selecting a candidate based on a statistical estimator biases the said
estimator for that candidate. And you need a greater number of “competence
checks” if you have a larger pool of candidates.

Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting 94 / 189

Over and under-fitting, capacity. K-nearest-neighbors

Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting 95 / 189

A simple classification procedure is the “K-nearest neighbors.”

Given
(xn,yn) €ERP x {1,...,C}, n=1,...,N

to predict the y associated to a new x, take the y, of the closest x;:
n*(x) = argmin|/x, — x||
n

f*(X) = Ynx(x)-

This recipe corresponds to K = 1, and makes the empirical training error zero.

Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting 96 / 189

Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting 97 / 189

Francois Fleuret

Francois Fleuret

Under mild assumptions of regularities of p1x y, for N — oo the asymptotic
error rate of the 1-NN is less than twice the (optimal!) Bayes’ Error rate.

It can be made more stable by looking at the K > 1 closest training points, and
taking the majority vote.

If we let also K — oo “not too fast”, the error rate is the (optimal!) Bayes’
Error rate.

CAS — Deep learning / 2.2. Over and under fitting 98 / 189

Training set

Prediction (K=1)

CAS — Deep learning / 2.2. Over and under fitting 99 / 189

Francois Fleuret

Francois Fleuret

Training set

avV - 46 T
‘ i\ - ' ‘
A * «
-) .
v‘

'Q
.

v
- v

s
A ’a ” \'m

Prediction (K=1)

CAS — Deep learning / 2.2. Over and under fitting

Training set

Votes (K=51)

Prediction (K=51)

CAS — Deep learning / 2.2. Over and under fitting

100 / 189

101 / 189

Francois Fleuret

0.3 —

Votes (K=51)

Training set

CAS — Deep learning / 2.2. Over and under fitting

Prediction (K=51)

0.25 -

0.2

0.15 -

Error

0.1

0.05 -

Underfitting
-—

: : ,
Train

Test

Overfitting
—_—

1000

Francois Fleuret

100 10

CAS — Deep learning / 2.2. Over and under fitting

102 / 189

103 / 189

Over and under-fitting, capacity, polynomials

Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting 104 / 189

Given a polynomial model

D
Vx,ap,...,ap €ER, f(x;a) = Zadxd.
d=0

and training points (xn,yn) € R2, n=1,..., N, the quadratic loss is

L(a) =) (f(xnia) = yn)’

n
0 D 2
l X7 ... X aQ vi
D
x,(\), S T ap YN

Hence, minimizing this loss is a standard quadratic problem, for which we have
efficient algorithms.

Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting 105 / 189

Francois Fleuret

Francois Fleuret

X{ X{ o
argmin : : : —
- :) :
x9 xP o
N - N D

def fit_polynomial(D, x, y):
X = torch.empty(x.size(0), D + 1)
for d in range(D + 1):
X[:, d] = x.pow(d)

gels expects a matrix for target
Y = y.view(-1, 1)

LAPACK’s GEneralized Least-Square
alpha, _ = torch.gels(Y, X)

return alphal[:D+1, 0]

CAS — Deep learning / 2.2. Over and under fitting

D, N =4, 100

x = torch.linspace(-math.pi, math.pi, N)
y = x.sin()

alpha = fit_polynomial(D, x, y)

X = torch.empty(N, D + 1)
for d in range(D + 1):

X[:, d] = x.pow(d)
yhat = X.mv(alpha)

for k in range(N):
print(x[k].item(), y[k].item(), yhat([k].item())

CAS — Deep learning / 2.2. Over and under fitting

34!

YN

106 / 189

107 / 189

Francois Fleuret

Francois Fleuret

We can use that model to illustrate how the prediction changes when we

increase the degree or the regularization.

CAS — Deep learning / 2.2. Over and under fitting

Degree D=0 Degree D=1 Degree D=2
5 5 5 15
Data ® Data Data Daa
r— r— 3
1
05
0
05 05 05 05
0 02 04 08 08 02 04 08 08 1 0 02 04 08 08 1 o 0z 04 08 o8 1
Degree D=3 Degree D=4 Degree D=5 Degree D=6
5 5 5 15
Data o Data o Data Daa
3 3 r— I
s 1
s 05
o
° 0 ° 0]
05 05 05 05
0 02 04 08 08 02 04 08 08 1 0 02 04 08 08 1 o 0z 04 08 08 1
Degree D=7 Degree D=8 Degree D=9
15 15
Daa © Daa ©
¢ —_— ¢ —_—
1
05
.
.
o
. g
05 05 n n n n
o 02 04 08 08 o 02 04 08 08 1

CAS — Deep learning / 2.2. Over and under fitting

108 / 189

109 / 189

Train
Test

Error (MSE)

1 0_3 | | | | | | |
0 1 2 3 4 5 6 7 8 9
Degree
Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting 110 / 189

We can visualize the influence of the noise by generating multiple training sets
D1, ..., Dpm with different noise, and training one model on each.

Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting 111 / 189

Degree D=0 Degree D=1 Degree D=2 Degree D=3

Degree Ded. Degree D=5 Degree D=6 Degree D=7

Degree D=8 Degree D=9

Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting 112 / 189

We can reformulate this control of the degree with a penalty

L(@) =) (Flxnia) = yn)* +) la(ag)
d

n
where

ly(a) = 0 fd<Dora=0
dle) = 400 otherwise.

Such a penalty kills any term of degree > D.

This motivates the use of more subtle variants. For instance, to keep all this
quadratic

@)= (Foxnia) =y +p 3 .
n d

Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting 113 / 189

Francois Fleuret

Francois Fleuret

D9, p-tet D=9, p=1e0 D=9, p=te-t D29, p=1e:2
15
r—
i
s
osf
o 1
05 L L L L
o 02 04 06 08 1
D-9,p-1e:3 D=9, p-ted D29, p-1e:5 -9, p=1e:6

D-9,p-t1e7

D=9, p-1e:8

D=9, p-1e-9

D=9, p=te-10

D9, prte-11

D=9, pte-12

D=9, p-te-13

0-9,p-00

Error (MSE)

CAS — Deep learning / 2.2. Over and under fitting

102

100

102

CAS — Deep learning / 2.2. Over and under fitting

10

106
P

108

10710

10712

10714

114 / 189

115 / 189

We define the capacity of a set of predictors as its ability to model an arbitrary
functional. This is a vague definition, difficult to make formal.

A mathematically precise notion is the Vapnik—Chervonenkis dimension of a set
of functions, which, in the Binary classification case, is the cardinality of the
largest set that can be labeled arbitrarily (Vapnik, 1995).

It is a very powerful concept, but is poorly adapted to neural networks. We will
not say more about it in this course.

Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting

Although the capacity is hard to define precisely, it is quite clear in practice how
to modulate it for a given class of models.

In particular one can control over-fitting either by

e Reducing the space # (less functionals, constrained or degraded
optimization), or

o Making the choice of 7* less dependent on data (penalty on coefficients,
margin maximization, ensemble methods).

Frangois Fleuret CAS — Deep learning / 2.2. Over and under fitting

116 / 189

117 / 189

2.4. Proper evaluation protocols

Francois Fleuret CAS — Deep learning / 2.4. Proper evaluation protocols 118 / 189

Learning algorithms, in particular deep-learning ones, require the tuning of many
meta-parameters.

These parameters have a strong impact on the performance, resulting in a
“meta” over-fitting through experiments.

We must be extra careful with performance estimation.

Running 100 times the same experiment on MNIST, with randomized weights,
we get:

Worst Median Best
1.3% 1.0% 0.82%

Francois Fleuret CAS — Deep learning / 2.4. Proper evaluation protocols 119 / 189

Francois Fleuret

Francois Fleuret

The ideal development cycle is
Write code ——> Train ——> Test ——> Paper

or in practice something like

Write code ——> Train ——> Test ——> Paper

N

There may be over-fitting, but it does not bias the final performance evaluation.

CAS — Deep learning / 2.4. Proper evaluation protocols

Unfortunately, it often looks like

ﬁ This should be avoided at all costs. The standard strategy is to have a
separate validation set for the tuning.

Write code ——> Train ——> Validation —> Test ——> Paper

CAS — Deep learning / 2.4. Proper evaluation protocols

120 / 189

121 / 189

When data is scarce, one can use cross-validation: average through multiple
random splits of the data in a train and a validation sets.

There is no unbiased estimator of the variance of cross-validation valid under all
distributions (Bengio and Grandvalet, 2004).

Francois Fleuret CAS — Deep learning / 2.4. Proper evaluation protocols 122 / 189

Some data-sets (MNIST!) have been used by thousands of researchers, over
millions of experiments, in hundreds of papers.

The global overall process looks more like

Francois Fleuret CAS — Deep learning / 2.4. Proper evaluation protocols 123 / 189

“Cheating” in machine learning, from bad to “are you kidding?":

o “Early evaluation stopping”,

e meta-parameter (over-)tuning,

e data-set selection,

e algorithm data-set specific clauses,

e seed selection.

Top-tier conferences are demanding regarding experiments, and are biased
against “complicated” pipelines.

The community pushes toward accessible implementations, reference data-sets,
leader boards, and constant upgrades of benchmarks.

Francois Fleuret CAS — Deep learning / 2.4. Proper evaluation protocols 124 / 189

3.1. The perceptron

Francois Fleuret CAS — Deep learning / 3.1. The perceptron 125 / 189

The first mathematical model for a neuron was the Threshold Logic Unit, with
Boolean inputs and outputs:

f(x) = l{wz, xj+b>0}"

It can in particular implement

or(u,v) = 1{,4v—05>0} (w=1,b=-0.5)
and(u, V) = 1{u+v—1.520} (W = 1, b= —15)
not(u) =1¢_,105>0 (w=-1,b=0.5)

Hence, any Boolean function can be build with such units.

(McCulloch and Pitts, 1943)

Francois Fleuret CAS — Deep learning / 3.1. The perceptron 126 / 189

The perceptron is very similar

1 if Z w;x;+b>0
f(x) = i
0 otherwise

but the inputs are real values and the weights can be different.

This model was originally motivated by biology, with w; being the synaptic
weights, and x; and f firing rates.

It is a (very) crude biological model.

(Rosenblatt, 1957)

Francois Fleuret CAS — Deep learning / 3.1. The perceptron 127 / 189

To make things simpler we take responses +1. Let

=] 1 i x>0
g - —1 otherwise.

—1

The perceptron classification rule boils down to
f(x) =o(w-x+ b).

For neural networks, the function o that follows a linear operator is called the
activation function.

Frangois Fleuret CAS — Deep learning / 3.1. The perceptron 128 / 189

We can represent this “neuron” as follows:

Value
wi Parameter
T
X1 |f—————o X []
I Operation

Ea
X
M
[]
WV
<

Francois Fleuret CAS — Deep learning / 3.1. The perceptron 129 / 189

We can also use tensor operations, as in

f(x) =o(w-x+ b).

T T
-

ol

CAS — Deep learning / 3.1. The perceptron

Given a training set
(Xn,yn) ERD X {_1, 1}’ n:l,...,N’
a very simple scheme to train such a linear operator for classification is the

perceptron algorithm:

1. Start with w® =0,
2. while 3ng s.t. yn, (Wk -xnk) <0, update wkt! = wk + y, xp, .

The bias b can be introduced as one of the ws by adding a constant component
to x equal to 1.

(Rosenblatt, 1957)

CAS — Deep learning / 3.1. The perceptron

130 / 189

131 / 189

def train_perceptron(x, y, nb_epochs_max):

W = torch.zeros(x

.size(1))

for e in range(nb_epochs_max):

nb_changes =

0

for i in range(x.size(0)):
if x[i].dot(w) * y[i] <= O:
w=w + y[i] * x[i]
nb_changes = nb_changes + 1
if nb_changes == 0: break;

return w

Francois Fleuret

CAS — Deep learning / 3.1. The perceptron 132 / 189

This crude algorithm works often surprisingly well. With MNIST’s “0"s as
negative class, and “1"s as positive one.

epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch

Francois Fleuret

o/

TN

0|0

|

Old

\
l
1

0|0

/
o
/
O

- ™~]Q

L
0|0

Al

LA

— |

/

0 nb_changes
1 nb_changes
2 nb_changes
3 nb_changes
4 nb_changes
5 nb_changes
6 nb_changes
7 nb_changes
8 nb_changes

CAS -

64 train_error 0.23% test_error 0.197
24 train_error 0.07% test_error 0.00%
10 train_error 0.06% test_error 0.05%
6 train_error 0.03% test_error 0.14}
5 train_error 0.03), test_error 0.09%
4 train_error 0.02Y% test_error 0.14Y
3 train_error 0.01% test_error 0.14%
2 0.00% test_error 0.14Y
0 0.00% test_error 0.14J

train_error
train_error

Deep learning / 3.1. The perceptron 133 / 189

We can get a convergence result under two assumptions:

1. The x, are in a sphere of radius R:
JR >0, Vn, ||xn]| £ R.

2. The two populations can be separated with a margin v > 0.
Iw*, w* | =1, 3y >0, Vn, yn (0 - w*) > v/2.

Francois Fleuret CAS — Deep learning / 3.1. The perceptron

To prove the convergence, let us make the assumption that there still is a
is the weight vector updated with

misclassified sample at iteration k, and whktl

it. We have
Wk-l—l cwk — (Wk + ynank) cw*

= wk.w* + Yn, (Xn, - W)

> wkowt 44/2

> (k+1)v/2.
Since

Iw l[w* || > w* - w*,

we get

2
Iwki2 > (wkew)

> k?~%/4.

Francois Fleuret CAS — Deep learning / 3.1. The perceptron

134 / 189

135 / 189

Francois Fleuret

Francois Fleuret

And

k+1)2
lw = =

IN

k1, k+1

w w

(Wk +_Ynank) : (Wk +_Vnank)

wk - wk 4 2 Yn, wk * Xny T+ ||X’7k||2
ﬁfo—/ ——

[w||> + R?

(k+1) R%.

CAS — Deep learning / 3.1. The perceptron

Putting these two results together, we get

hence

hence no misclassified sample can remain after L4R2/72J iterations.

This result makes sense:

e The bound does not change if the population is scaled, and

e the larger the margin, the more quickly the algorithm classifies all the

samples correctly.

Ky? /4 < [wh? < kR?

k <4R? /2,

CAS — Deep learning / 3.1. The perceptron

<R

136 / 189

137 / 189

The perceptron stops as soon as it finds a separating boundary.

Other algorithms maximize the distance of samples to the decision boundary,
which improves robustness to noise.

Support Vector Machines (SVM) achieve this by minimizing
1
L(w,b) = \|w|®+ = 0,1 — yn(w - xa + b)),
(w, b) = Alw]| +N;ma><(Yn(w - xn + b))

which is convex and has a global optimum.

Francois Fleuret CAS — Deep learning / 3.1. The perceptron 138 / 189

1
Z(w, b) = \||wl||® + N Z max(0,1 — yn(w - xn + b))

° Support vectors

Minimizing max(0,1 — y,(w - x, + b)) pushes the nth sample beyond the plane
W - x + b = yp, and minimizing ||w||? increases the distance between the

w-x+b==+1.

At convergence, only a small number of samples matter, the “support vectors”.

Francois Fleuret CAS — Deep learning / 3.1. The perceptron 139 / 189

The term
max(0,1 — «)

is the so called “hinge loss”

Francois Fleuret CAS — Deep learning / 3.1. The perceptron 140 / 189

3.3. Linear separability and feature design

Frangois Fleuret CAS — Deep learning / 3.3. Linear separability and feature design 141 / 189

The main weakness of linear predictors is their lack of capacity. For
classification, the populations have to be linearly separable.

o © ® oo @
° ° °
[] []
° []
[}
[}
[}
[}
[} []
®_0 0 y) ® ®
° 0o, , °
° ° o o O
° o o o0 o © °
o ,° 0° o
° o o, o 0 o °
[Y J
° ® %0 ° °
L o ° °
[] 0o o0
(] [] ®
[] []
[} ° °
o® °
[}
[
° [° " "
°o 0 o © Xor
Frangois Fleuret CAS — Deep learning / 3.3. Linear separability and feature design 142 / 189

The xor example can be solved by pre-processing the data to make the two
populations linearly separable.

D (xu, xv) = (Xuy Xv, XuXy).

(1,1,1)

/'205 1)/'2_1, 1) }?o,) /0)
0.0 1,0 “1(60.0) “T(1,0,0)

Frangois Fleuret CAS — Deep learning / 3.3. Linear separability and feature design 143 / 189

® X + a%

Perceptron

Frangois Fleuret CAS — Deep learning / 3.3. Linear separability and feature design 144 / 189

This is similar to the polynomial regression. If we have
d:x— (1,X,X2,...,XD)

and
a=(ag,...,ap)

then

D
Z agx?d = a - d(x).
d=0

By increasing D, we can approximate any continuous real function on a
compact space (Stone-Weierstrass theorem).

It means that we can make the capacity as high as we want.

Frangois Fleuret CAS — Deep learning / 3.3. Linear separability and feature design 145 / 189

We can apply the same to a more realistic binary classification problem:
MNIST's “8" vs. the other classes with a perceptron.

The original 28 x 28 features are supplemented with the products of pairs of
features taken at random.

Train error
Test error

Error (%)

0 " PRI | " " " " " PRI |
103 10*
Nb. of features

Frangois Fleuret CAS — Deep learning / 3.3. Linear separability and feature design 146 / 189

Remember the bias-variance tradeoff:
E((Y = y)?) = (BE(Y) — y)> + V(Y).
—_— =
Bias Variance
The right class of models reduces the bias more and increases the variance less.

Beside increasing capacity to reduce the bias, “feature design” may also be a
way of reducing capacity without hurting the bias, or with improving it.

In particular, good features should be invariant to perturbations of the signal
known to keep the value to predict unchanged.

Frangois Fleuret CAS — Deep learning / 3.3. Linear separability and feature design 147 / 189

We can illustrate the use of features with k-NN on a task with radial symmetry.
Using the radius instead of 2d coordinates allows to cope with label noise.

Training points Votes (K=11) Prediction (K=11)

29

Using 2d coordinates

Using the radius

Frangois Fleuret CAS — Deep learning / 3.3. Linear separability and feature design 148 / 189

A classical example is the “Histogram of Oriented Gradient” descriptors (HOG),
initially designed for person detection.

Roughly: divide the image in 8 X 8 blocks, compute in each the distribution of
edge orientations over 9 bins.

Dalal and Triggs (2005) combined them with a SVM, and Dollér et al. (2009)
extended them with other modalities into the “channel features”.

Frangois Fleuret CAS — Deep learning / 3.3. Linear separability and feature design 149 / 189

Many methods (perceptron, SVM, k-means, PCA, etc.) only require to
compute k(x, x’) = ®(x) - (x’) for any (x, x").

So one needs to specify k alone, and may keep ® undefined.

This is the kernel trick, which we will not talk about in this course.

Frangois Fleuret CAS — Deep learning / 3.3. Linear separability and feature design 150 / 189
Training a model composed of manually engineered features and a parametric
model such as logistic regression is now referred to as “shallow learning”.
The signal goes through a single processing trained from data.
151 / 189

Frangois Fleuret CAS — Deep learning / 3.3. Linear separability and feature design

3.4. Multi-Layer Perceptrons

Frangois Fleuret CAS — Deep learning / 3.4. Multi-Layer Perceptrons 152 / 189

So far we have seen linear classifiers of the form

RP SR
x — o(w - x+ b),

withw e RP beR, and o : R — R.

This can naturally be extended to a multi-dimension output by applying a
similar transformation to every output, which leads to

RP s R€

x — o(wx + b),

with w € R€XDP b € RC, and o is applied component-wise.

Frangois Fleuret CAS — Deep learning / 3.4. Multi-Layer Perceptrons 153 / 189

Even though it has no practical value implementation-wise, we can represent
such a model as a combination of units, and extend it.

f(x; w, b)

w, b

Single unit

f(x; w, b)

WO 1 L@ 2 L0 H®)

Multiple layers of units

Frangois Fleuret CAS — Deep learning / 3.4. Multi-Layer Perceptrons 154 / 189

This latter structure can be formally defined, with x(0) = x,
Vi=1,....L x)=¢ (w(’)x(’—l) + b(’))

and f(x; w, b) = x(1),

w®) p(1) w(b) pD

x(b) = f(x; w, b)

= x© |t x |+| IU\%NH—'“—X(L—U

Layer 1 Layer L

Such a model is a Multi-Layer Perceptron (MLP).

Frangois Fleuret CAS — Deep learning / 3.4. Multi-Layer Perceptrons 155 / 189

Note that if o is an affine transformation, the full MLP is a composition of
affine mappings, and itself an affine mapping.

Consequently:

C The activation function o should be non-linear, or the resulting MLP
is an affine mapping with a peculiar parametrization.

Frangois Fleuret CAS — Deep learning / 3.4. Multi-Layer Perceptrons 156 / 189

The two classical activation functions are the hyperbolic tangent

2
X — —1
1+ e 2

-1
and the rectified linear unit (ReLU)

x — max(0, x)

Frangois Fleuret CAS — Deep learning / 3.4. Multi-Layer Perceptrons 157 / 189

Universal approximation

Frangois Fleuret CAS — Deep learning / 3.4. Multi-Layer Perceptrons 158 / 189

We can approximate any 1 € €([a, b], R) with a linear combination of
translated/scaled ReLU functions.

f(X) = U(W1X+ bl) + O'(WQX + b2) -+ O'(W3X + b3) + ...

N/ N

This is true for other activation functions under mild assumptions.

Frangois Fleuret CAS — Deep learning / 3.4. Multi-Layer Perceptrons 159 / 189

Extending this result to any ¢ € ([0, 1]°, R) requires a bit of work

First, we can use the previous result for the sin function
N,

VYA > 0,e >0, IN, (ap,an) ERXxR,n=1
.t. — <e.
s xeTla/)\(,A] sin(x) — Zancr x—ap)| <e
And the density of Fourier series provides
vy € €([0,1]P,R), 8 > 0,IM, (Vim, Ym, cm) ERP x Rx R, m =1 M,
M
s.t. max X) — sin(vm - X + ¢ < 6.
i Srwte

CAS — Deep learning / 3.4. Multi-Layer Perceptrons

Francois Fleuret

So, V& > 0, with
6:§,A: max max |Vm-X+cm|, and €= &5
2 1<m<M xg[0,1]P 22 |Vim]

we get, Vx € [0,1]P,

M N
‘w(x) — Z Ym <Z ano(Vm - X + cm — a,,)> ‘
m=1 n=1

M
< |Y(x) — Z Ym Sin(Vm - X 4+ ¢cm)
m=1

-~

<

J/

N

N |

N

sin(Vm + X 4+ ¢m)

M
+ Z|7m|

m=1 n=1
€
_2Zm |’Ym|
N vg 7
<3

CAS — Deep learning / 3.4. Multi-Layer Perceptrons

Francois Fleuret

160 / 189

161 / 189

Francois Fleuret

Francois Fleuret

So we can approximate any continuous function

¥ :0,1]°P - R

with a one hidden layer perceptron

where b € RK, w € RKXD,

x+— w-o(wx+ b),

and w € RKX,

X + m
L

Hidden layer

This is the universal approximation theorem.

ﬁ A better approximation requires a larger hidden layer (larger K), and
this theorem says nothing about the relation between the two.

17

CAS — Deep learning / 3.4. Multi-Layer Perceptrons

3.5. Gradient descent

CAS — Deep learning / 3.5. Gradient descent

162 / 189

163 / 189

We saw that training consists of finding the model parameters minimizing an
empirical risk or loss, for instance the mean-squared error (MSE)

Z(w, b) = L Z (f(xn; w, b) — yn)?.
N

Other losses are more fitting for classification, certain regression problems, or
density estimation. We will come back to this.

So far we minimized the loss either with an analytic solution for the MSE, or
with ad hoc recipes for the empirical error rate (k-NN and perceptron).

Frangois Fleuret CAS — Deep learning / 3.5. Gradient descent 164 / 189

There is generally no ad hoc method. The logistic regression for instance

1

Pu(Y=1| X =x)=0(w-x+b), with o(x) = ————
14+ e

leads to the loss

Z(w,b) = — Z log o(yn(w - xn + b))

which cannot be minimized analytically.

The general minimization method used in such a case is the gradient descent.

Frangois Fleuret CAS — Deep learning / 3.5. Gradient descent 165 / 189

Given a functional

f:RP 5 R
x+— f(x1,...,xp),
its gradient is the mapping
Vf:RP - RP
of of
1 (G 5 ()
X1 Oxp
Frangois Fleuret CAS — Deep learning / 3.5. Gradient descent 166 / 189
To minimize a functional
Z:RP 5 R

the gradient descent uses local linear information to iteratively move toward a
(local) minimum.

For wg € RP, consider an approximation of Z around wy
~ 1
Pun(W) = Z(wo) + VL (wo) T (W — wo) + %”W — .
Note that the chosen quadratic term does not depend on Z.

We have 1
VLw (W) =VL(wo) + E(W - wp),

which leads to B
argmin Ly, (w) = wyp — nVZ(wp).

Frangois Fleuret CAS — Deep learning / 3.5. Gradient descent 167 / 189

The resulting iterative rule, which goes to the minimum of the approximation at
the current location, takes the form:

which corresponds intuitively to “following the steepest descent”.

Wer1 = wy — VL (we),

This [most of the time] eventually ends up in a local minimum, and the choices
of wp and 7 are important.

Francois Fleuret

wo

R,
K

wa

R,
X

wg

Francois Fleuret

CAS — Deep learning / 3.5. Gradient descent

w1 W2

R,
A8
K
K

W5 We

R,
A8
K
S8

wo w10

CAS — Deep learning / 3.5. Gradient descent

¢ @
w3
A
wy

¥ @
w11

168 / 189

169 / 189

Francois Fleuret

Francois Fleuret

<L

W

wo

.

Wy

Y

wg

2

©

wo

wa

wg

n=0.125

.

w1

e,

W5

.

Wo

A

W2

.
. e,

We

.

W10

CAS — Deep learning / 3.5. Gradient descent

Wo

A4

W)
Fr

We
P

Wig

CAS — Deep learning / 3.5. Gradient descent

.

w3

wi1

170 / 189
I @
w3
24
Wy
A
w11
171 / 189

Francois Fleuret

Francois Fleuret

N = 7

pmm~ NN 7L
Lt s s, N NSNS

CAS — Deep learning / 3.5. Gradient descent

We saw that the minimum of the logistic regression loss
Z(w,b) = — Z log o(yn(w - xn + b))

does not have an analytic form.

CAS — Deep learning / 3.5. Gradient descent

172 / 189

173 / 189

We can derive

0Z
a5 ; Yn U(—Yn(z - Xn + b)),
Un
0Z
vd, 8_Wd = - Zn: fn,d Yn U(_yivr(W “ Xn + b)z;
Vn,d

which can be implemented as

def gradient(x, y, w, b):
u=y * (-y * (x.mv(w) + b)).sigmoid_Q)
v = x * u.view(-1, 1) # Broadcasting
return - v.sum(0), - u.sum()

and the gradient descent as

w, b = torch.empty(x.size(1)).normal_(), O
eta = le-1

for k in range(nb_iterations):
dw, db = gradient(x, y, w, b)
w -= eta * dw
b -= eta * db

Frangois Fleuret CAS — Deep learning / 3.5. Gradient descent 174 / 189

100 T T T T T T T T T

Loss
—
I
! L1l ! Lo

0.01 | | | | | | | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

o

Nb. of steps

Frangois Fleuret CAS — Deep learning / 3.5. Gradient descent 175 / 189

With 100 training points and n = 10~1.

n=20 n=10 n = 102

LDA

Francois Fleuret CAS — Deep learning / 3.5. Gradient descent 176 / 189

n=103 n=10%

3.6. Back-propagation

Francois Fleuret CAS — Deep learning / 3.6. Back-propagation 177 / 189

We want to train an MLP by minimizing a loss over the training set

g(W, b) = Zf(f(xn; w, b)7yn)'

To use gradient descent, we need the expression of the gradient of the loss with
respect to the parameters:

0L 0%
and — .
o) ob!"

So, if we define £, = £(f(xn; w, b), yn), what we need is

¢ ¢
9t 9%

ow" op

N i

Francois Fleuret CAS — Deep learning / 3.6. Back-propagation 178 / 189

For clarity, we consider a single training sample x, and introduce s1), ..., s(0)
as the summations before activation functions.

w® p2

w®)_p1) > >

Ty 22 D 5 kD) = f(x; w, b).

Formally we set x0 = x,

s() — WD x(=1) 4 p()
VI = 17) &=
x0) = g (s) |

and we set the output of the network as f(x; w, b) = x(1),

This is the forward pass.

Francois Fleuret CAS — Deep learning / 3.6. Back-propagation 179 / 189

The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(gof) =(g"of)f

which generalizes to longer compositions and higher dimensions

N
Jtyoty_ro-0f () = [[I (fam1 0+ 0 fi(x)),
n=1

where J¢(x) is the Jacobian of f at x, that is the matrix of the linear
approximation of f in the neighborhood of x.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

What follows is exactly this principle applied to a MLP.

Francois Fleuret CAS — Deep learning / 3.6. Back-propagation 180 / 189

(h ph (I+1) p(l+1)
S oy =y WBT () oy () v (1) oy (L) p

ANNANNNNANNNNN

We have / N (1 /
0= 3wl 40,
J
o) WI.(IJ.) influences £ only through sl.(l), and we get

ot ot 55,-(1) ot (1-1)

o)~ 05D gw 90T
Y] / 1,J) 1

and similarly

o or
o) as)’
Since we know x'' V) from the forward pass, we only need 8—’}.
J s

Francois Fleuret CAS — Deep learning / 3.6. Back-propagation 181 / 189

w p (I+1) 1 (l+1)
AN (E LN () B () B AL SN (75 B NN (D BN

We have
xl.() = O'(S(I))
() ()

and since s;’ influences Z only through x; 7, the chain rule gives

or or X" or (1)
85,.(1) a 8X,.(I) 85,.(1) B 8Xi(l) 7

Since we know s() from the forward pass, we only need aa(,)

Francois Fleuret CAS — Deep learning / 3.6. Back-propagation 182 / 189

w ph WD) (D)
A G B LA (B (i (o SNSRI (O N

We know

ax.(L)

]

from the definition of 7, and V/ =1,...,L — 1, since

/+1 Z /+1 (l +b’+1

(!

and X; (I+1)

influences # only through the s, "™/, we have

a¢ a¢ asi Y o 1
= — w, .~.
8x,.(’) Eh: 85,(,’“) ax,.(’) 2}; 85,(7’“) h,i

Francois Fleuret CAS — Deep learning / 3.6. Back-propagation 183 / 189

To write all this in tensorial form, if 1) : RV — RM we will use the standard

Jacobian notation

0 O,

op1 | ™

x| : K : ’
oYy Oy
Bxl 8XN

and if ¢ : RV*M _ R we will use the compact notation, also tensorial

o o
ow 1 T owy, m
oY . , .
ow - : -
oY oY
8WN71 e 8WN,M

A standard notation (that we do not use here) is

ot ot ot
} = Vol {—] = V€ [{—ﬂ = V,n?.

or Y
- — / P
ax(07 as) ab(aw(D
Francois Fleuret CAS — Deep learning / 3.6. Back-propagation 184 / 189
/ [or / lol4
wl?) | w(b [ab(/)]
/" /]\ N
f : T
LU= |} X | + | > s |k @ >|xh
L L
\ o
Bf T 1 af 1 Bf
[8x(l_1)] < X ' [asm] < © ' [axm]
185 / 189

CAS — Deep learning / 3.6. Back-propagation

Francois Fleuret

Forward pass

Compute the activations.

s() = w(Dx(=1) 4 p()
1
SRR RV () J (s)
Backward pass

Compute the derivatives of the loss wrt the activations.

or .
from the definition of #
[axm] rom the definition © { o¢ } _ { o¢ } o o (s<’))

ifl < L, [l] — (W(/+1))T [33/{1)} sl ax()

Compute the derivatives of the loss wrt the parameters.
ow()] — [as) ob os()
Gradient step

Update the parameters.

ot ot
(N (n _ = () (n _ -
w'\ — w n[{aw(/)ﬂ b\ «~— b n{ab(’)}

Francois Fleuret CAS — Deep learning / 3.6. Back-propagation 186 / 189

In spite of its hairy formalization, the backward pass is a simple algorithm:
apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy
computation is concentrated in linear operations, and all the non-linearities go
into component-wise operations.

Francois Fleuret CAS — Deep learning / 3.6. Back-propagation 187 / 189

Regarding computation, since the costly operation for the forward pass is

s(N — (D5 (1=1) + p)
and for the backward

" o¢ T[o
_ (I+1)
ax(/)} - (W) {as(m)}

ot ot T
_ (1-1)
L?w(’)]] - {as(/)} (X) ’

the rule of thumb is that the backward pass is twice more expensive than the
forward one.

and

Francois Fleuret CAS — Deep learning / 3.6. Back-propagation 188 / 189

References

Y. Bengio and Y. Grandvalet. No unbiased estimator of the variance of k-fold
cross-validation. Journal of Machine Learning Research (JMLR), 5:1089-1105, 2004.

A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural
image synthesis. CoRR, abs/1809.11096, 2018.

A. Canziani, A. Paszke, and E. Culurciello. An analysis of deep neural network models for
practical applications. CoRR, abs/1605.07678, 2016.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
Conference on Computer Vision and Pattern Recognition (CVPR), pages 886—893,
2005.

P. Dolldr, Z. Tu, P. Perona, and S. Belongie. Integral channel features. In British Machine
Vision Conference, pages 91.1-91.11, 2009.

K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):
193-202, April 1980.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

A. Krizhevsky. Learning multiple layers of features from tiny images. Master's thesis,
Department of Computer Science, University of Toronto, 2009.

A. Krizhevsky, |. Sutskever, and G. Hinton. Imagenet classification with deep convolutional
neural networks. In Neural Information Processing Systems (NIPS), 2012.

A. Kumar, O. Irsoy, J. Su, J. Bradbury, R. English, B. Pierce, P. Ondruska, |. Gulrajani,
and R. Socher. Ask me anything: Dynamic memory networks for natural language
processing. CoRR, abs/1506.07285, 2015.

Y. leCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115-133, 1943.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis.
Human-level control through deep reinforcement learning. Nature, 518(7540):529-533,
Feb. 2015.

P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollar. Learning to refine object segments.
In European Conference on Computer Vision (ECCV), pages 75-91, 2016.

A. Radford, J. Wu, D. Amodei, D. Amodei, J. Clark, M. Brundage, and |. Sutskever.
Better language models and their implications. web, February 2019.
https://blog.openai.com/better-language-models/.

F. Rosenblatt. The perceptron—A perceiving and recognizing automaton. Technical Report
85-460-1, Cornell Aeronautical Laboratory, 1957.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Neurocomputing: Foundations of
Research, chapter Learning Representations by Back-propagating Errors, pages 696—-699.
MIT Press, 1988.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, |. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis. Mastering the game of go with deep neural networks and
tree search. Nature, 529:484-503, 2016.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In Conference on Computer Vision

and Pattern Recognition (CVPR), 2015.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York,
1995.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption
generator. In Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose machines. CoRR,
abs/1602.00134, 2016.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws,
Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,
J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean.
Google's neural machine translation system: Bridging the gap between human and
machine translation. CoRR, abs/1609.08144, 2016.

S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. End-to-end learning of action detection
from frame glimpses in videos. CoRR, abs/1511.06984, 2015.

https://blog.openai.com/better-language-models/

	From artificial neural networks to ``Deep Learning''
	Why does it work now?
	Implementing a deep network, PyTorch
	Example: linear regression
	Broadcasting
	Risk, empirical risk
	Over and under-fitting, capacity. K-nearest-neighbors
	Over and under-fitting, capacity, polynomials
	Universal approximation

