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Introduction
Classification

The usual setting for learning for classification:

- A training set,
- a family of classifiers,
- a test set.

Learning means to choose a classifier according to its
performances on the training set to get good performances on the
test set.
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Introduction
Topic of this lecture

The goal of this lecture is to give an intuitive understanding of the
Probably Approximately Correct learning (PAC learning for short)
theory.

- Concentration inequalities,
- basic PAC results,
- relation with Occam’s principle,

Figures are supposed to help. If they do not, ignore them.
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Introduction
Notation

We will use the following notation:

- X the space of the objects to classify (for instance images),
- C the family of classifiers,
- S = ((X1, Y1), . . . , (X2N , Y2N)) a random variable on

(X × {0,1})2N standing for the training and test samples,
- F a random variable on C standing for the learned classifier. It

can be a deterministic function of S or not.
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Introduction
Remarks

- The set C contains all the classifiers obtainable with the
learning algorithm.

For an ANN for instance, there is one element of C for every
single configuration of the synaptic weights.

- The variable S is not one sample, but a family of 2N samples
with their labels. It contains both the training and the test set.
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Gap between training and test error
One fixed f

For every f ∈ C, let ξ(f , S) denote the difference between the
training and the test errors of f estimated on
S = ((X1, Y1), . . . , (X2N , Y2N)).

ξ(f , S) =
1
N

N∑
i=1

1{f (XN+i) 6= YN+i}︸ ︷︷ ︸
test error

− 1
N

N∑
i=1

1{f (Xi) 6= Yi}︸ ︷︷ ︸
training error

Where 1{t} is equal to 1 if t is true, and 0 otherwise. Since S is
random, this is a random quantity.
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Gap between the test and the training error
Data-dependent f

Given η, we want to bound the probability that the test error is less
than the training error plus η.

P (ξ(F , S) ≤ η) ≥ ?

Here F is not constant anymore and depends on the X1, . . . , X2N
and the Y1, . . . , YN .
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Do figures help ?
Violations of the error gap

F

S

Each row corresponds to a classifier, each column to a pair
training/test set. Gray squares indicate ξ(F , S) > η.
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Do figures help ?
A training algorithm

F

S

A training algorithm associates an F to every S, here shown with
dots. We want to bound the number of dots on gray cells.
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Concentration Inequality
Introduction

Where we see that for any fixed f , the test and
training errors are likely to be similar . . .
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Concentration Inequality
Hœffding’s inequality (1963)

Given a family of independent random variables Z1, . . . ,ZN ,
bounded ∀i ,Zi ∈ [ai ,bi ], if S denotes

∑
i Zi , we have Hœffding’s

inequality (1963).

P(S − E(S) > t) ≤ exp

(
− 2t2∑

i(bi − ai)2

)

This is an concentration result: It tells how much S is concentrated
around its average value.
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Concentration Inequality
Application to the error

Note that the 1{f (Xi) 6= Yi} are i.i.d Bernoulli, and we have

ξ(f , S) =
1
N

N∑
i=1

1{f (XN+i) 6= YN+i} −
1
N

N∑
i=1

1{f (Xi) 6= Yi}

=
1
N

N∑
i=1

1{f (XN+i) 6= YN+i} − 1{f (Xi) 6= Yi}︸ ︷︷ ︸
∆i

Thus ξ is the averaged sum of the ∆i , which are i.i.d random
variables on {−1, 0, 1} of zero mean.
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Concentration Inequality
Application to the error

Hence, when f is fixed we have (Hœffding):

η

∀f , ∀η, P (ξ(f , S) > η) ≤ exp

(
−1

2
η2 N

)

(On our graph, we have an upper bound on the number of gray
cells per row.)
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Union bound
Introduction

Where we realize that the probability the chosen
F fails is lower than the probability that there
exists a f that fails . . .
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Union bound
A first generalization bound

We have

P(ξ(F , S) > η) =
∑

f

P(F = f , ξ(F , S) > η)

=
∑

f

P(F = f , ξ(f , S) > η)

≤
∑

f

P(ξ(f , S) > η)

≤ ‖C‖ exp

(
−1

2
η2 N

)

This is our first generalization bound!
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Do figures help ?
The union bound

F

S

We can see that graphically as a situation when the dots meet all
the gray squares.
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Union bound
We can fix the probability

If we define

ε? = ‖C‖ exp

(
−1

2
η2 N

)

We have √
2

log ‖C‖ − log ε?

N
= η
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Union bound
We can fix the probability

Hence from

P(ξ(F , S) > η) ≤ ‖C‖ exp

(
−1

2
η2 N

)

we get

P

ξ(F , S) >

√
2

log ‖C‖ + log 1
ε?

N

 ≤ ε?

Thus, with probability 1− ε?, we know that the gap between the
train and test error grows like the square root of the log of the
number of classifiers ‖C‖.
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Prior on C
Introduction

Where we realize that we can arbitrarily dis-
tribute allowed errors on the fs before looking at
the training data . . .
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Prior on C
What do we control

At that point, the only quantity we control is ‖C‖.

If we know that some of the mappings can be removed without
hurting the train error, we can remove them and get a better bound.

Can we do something better than that?

We introduce η(f ) as the control we want between the train and test
error if f is chosen. Until now, this was constant.
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Prior on C
Let make η depend on F

Let ε(f ) denote the (bound on the) probability that the constraint is
not verified for f

P(ξ(F , S) > η(F )) ≤ P (∃f ∈ C, ξ(f , S) > η(f ))

≤
∑

f

P(ξ(f , S) > η(f ))

≤
∑

f

ε(f )

and we have

∀f , η(f ) =

√
2

log 1
ε(f )

N
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Prior on C
Let make η depend on F

Let define ε? =
∑

f ε(f ) and ρ(f ) = ε(f )
ε? . The later is a distribution on

C.

Note that both can be fixed arbitrarily, and we have

∀f , η(f ) =

√
2

log 1
ρ(f ) + log 1

ε?

N
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Do figures help ?
When η depends on f

S

fη(  )

If the margin η depends on F , the proportion of gray squares is not
the same on every row.
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Prior on C
Let’s put everything together

Our final result is that, if

- we choose a distribution ρ on C arbitrarily,
- we choose 0 < ε? < 1 arbitrarily,
- we sample a pair S training set / test set each of size N,
- we choose a F after looking at the training set.

Then, we have with probability greater than 1− ε?:

ξ(F , S) ≤

√
2

log 1
ρ(F ) + log 1

ε?

N

where ξ(F , S) is the difference between the test and train errors.
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Prior on C
This is a philosophical theorem!

If we see − log ρ(f ) as the “description” length of f (think Huffman).
Our result true with probability ε?

ξ(F , S) ≤

√
2

log 1
ρ(F ) + log 1

ε?

N

says that picking a classifier with a long description leads to a bad
control on the test error.

Entities should not be multiplied unnecessarily.

Principle of parsimony of William of Occam (1280 – 1349). Also
known as Occam’s Razor.
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The end
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