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Introduction

Classification

The usual setting for learning for classification:

- A training set,
- a family of classifiers,
- atest set.

Learning means to choose a classifier according to its
performances on the training set to get good performances on the
test set.
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Introduction
Topic of this lecture

The goal of this lecture is to give an intuitive understanding of the
Probably Approximately Correct learning (PAC learning for short)
theory.

- Concentration inequalities,
- basic PAC results,
- relation with Occam’s principle,

Figures are supposed to help. If they do not, ignore them.
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Introduction

Notation

We will use the following notation:

- X the space of the objects to classify (for instance images),
- C the family of classifiers,

- S=((X1, Y1), ..., (Xon, Yan)) @ random variable on
(X x {0,1})2N standing for the training and test samples,

- F arandom variable on C standing for the learned classifier. It
can be a deterministic function of S or not.
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Introduction

Remarks

- The set C contains all the classifiers obtainable with the
learning algorithm.

For an ANN for instance, there is one element of C for every
single configuration of the synaptic weights.

- The variable S is not one sample, but a family of 2N samples
with their labels. It contains both the training and the test set.
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Gap between training and test error
One fixed f

For every f € C, let {(f, S) denote the difference between the
training and the test errors of f estimated on

S=((X1, Y1), ..., (Xon, Yon))-

N
Z XN+/ # YN+/ N Z 1{f ?é Y}

2 \

test error training error

Where 1{t} is equal to 1 if t is true, and 0 otherwise. Since S'is
random, this is a random quantity.

6/26



Gap between the test and the training error
Data-dependent f

Given n, we want to bound the probability that the test error is less
than the training error plus 7.

P((F,S)<n) = 7

Here F is not constant anymore and depends on the Xi, ..., Xopn
and the Yy, ..., Yn.
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Do figures help ?

Violations of the error gap

m

Each row corresponds to a classifier, each column to a pair
training/test set. Gray squares indicate {(F, S) > 7.

S
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Do figures help ?

A training algorithm

H

A training algorithm associates an F to every S, here shown with
dots. We want to bound the number of dots on gray cells.

S
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Concentration Inequality

Introduction

Where we see that for any fixed f, the test and
training errors are likely to be similar . . .
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Concentration Inequality
Heeffding’s inequality (1963)

Given a family of independent random variables Zi, ..., Zy,
bounded Vi, Z; € [a;, bj], if S denotes ), Z;, we have Heeffding’s
inequality (1963).

2
PS—E()>1) = v (-5p )
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Concentration Inequality
Heeffding’s inequality (1963)

Given a family of independent random variables Zi, ..., Zy,
bounded Vi, Z; € [a;, bj], if S denotes ), Z;, we have Heeffding’s
inequality (1963).

2
PS—E()>1) = v (-5p )

This is an concentration result: It tells how much S is concentrated
around its average value.

11/26



Concentration Inequality

Application to the error

Note that the 1{f(X;) # Y;} are i.i.d Bernoulli, and we have

N
(f,8) = Z F(Xnai) # Ynrit — ZW ) # Vi)

Z \

Z \

Z
= Z XN—H 7& YN—H} - 1{f( i) 7‘é Yl}

Aj
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Concentration Inequality

Application to the error

Note that the 1{f(X;) # Y;} are i.i.d Bernoulli, and we have

Z \

N
£(f,S) = Z XN+,#YN+,}—NZ1{f ) # Yi}

Z \

Z
— Z f(Xnti) # Ynvit — H{E(X) # Vit

Aj

Thus ¢ is the averaged sum of the A;, which are i.i.d random
variables on {—1, 0, 1} of zero mean.
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Concentration Inequality

Application to the error

Hence, when f is fixed we have (Hoeffding):

<>

n

Wi, P S)> ) < e (5 N)
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Concentration Inequality

Application to the error

Hence, when f is fixed we have (Hoeffding):

<>

n

o P S) > ) < e (~giEN)

(On our graph, we have an upper bound on the number of gray
cells per row.)
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Union bound

Introduction

Where we realize that the probability the chosen
F fails is lower than the probability that there
exists a f that fails . . .
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Union bound

A first generalization bound

We have

PE(F, 8)>n) = Y P(F=f¢F.S)>mn)
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Union bound

A first generalization bound

We have

PE(F, S)>n) = ZP(F—f &(F, 8) >n)

= ZP &(f, S) > 1)
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Union bound

A first generalization bound

We have

PE(F. S)>n) = 3. P(F=Ff ¢F. S)>n)
— S P(F=f,¢(f, S)>n)

f
< S Pt S) > n)
f
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Union bound

A first generalization bound

We have

PE(F. S)>n) = 3. P(F=Ff ¢F. S)>n)
— S P(F=f,¢(f, S)>n)

f
< S Pt S) > n)
f

1
< el exo (5 N)
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Union bound

A first generalization bound

We have
P(E(F, S) >n) = ZP &(F, S) >mn)
= ZP &(f, S) > 1)

< Z P(<(f. S) > 1)

1
< el exo (5 N)

This is our first generalization bound!
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Do figures help ?

The union bound

S

We can see that graphically as a situation when the dots meet all
the gray squares.
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Union bound
We can fix the probability

If we define

e = [C| exp <—;772N>

We have

log ||C]| — log e*
oS lMIl — Fer
\/ N
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Union bound
We can fix the probability

Hence from

PE(F. 9)>n) < Ic] e~ N)

1
P(E(F, S)>\/2 'ogcljlogf*> < &

we get
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Union bound
We can fix the probability

Hence from

PE(F. 9)>n) < Ic] e~ N)

| log L
P(a(F, 3)>\/2 ce ] + s ) .

Thus, with probability 1 — ¢*, we know that the gap between the
train and test error grows like the square root of the log of the
number of classifiers ||C||.

we get
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Prior on C

Introduction

Where we realize that we can arbitrarily dis-
tribute allowed errors on the fs before looking at
the training data . . .
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Prior on C
What do we control

At that point, the only quantity we control is ||C||.

If we know that some of the mappings can be removed without
hurting the train error, we can remove them and get a better bound.

Can we do something better than that?
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Prior on C
What do we control

At that point, the only quantity we control is ||C||.

If we know that some of the mappings can be removed without
hurting the train error, we can remove them and get a better bound.

Can we do something better than that?

We introduce 7(f) as the control we want between the train and test
error if f is chosen. Until now, this was constant.
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Prior on C
Let make n depend on F

Let ¢(f) denote the (bound on the) probability that the constraint is

not verified for f

PE(F, S) > n(F))

and we have

P(3f € C, &(f, S) > n(f))
> P, 8) > u(f))
f
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Prior on C
Let make n depend on F

Let define ¢* = 3, ¢(f) and p(f) = <. The later is a distribution on
.

Note that both can be fixed arbitrarily, and we have

IogL+|ogg—*
vf, n(f) = ¢2”“)N

22/26



Do figures help ?
When 1 depends on f

n(f)

>

If the margin n depends on F, the proportion of gray squares is not
the same on every row.
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Prior on C
Let’s put everything together

Our final result is that, if

we choose a distribution p on C arbitrarily,

we choose 0 < ¢* < 1 arbitrarily,

we sample a pair S training set / test set each of size N,
we choose a F after looking at the training set.
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Prior on C
Let’s put everything together

Our final result is that, if

we choose a distribution p on C arbitrarily,

we choose 0 < ¢* < 1 arbitrarily,

we sample a pair S training set / test set each of size N,
we choose a F after looking at the training set.

Then, we have with probability greater than 1 — ¢*:

lo + lo
¢F,S) < \/2 g()N g

where £(F, S) is the difference between the test and train errors.
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Prior on C

This is a philosophical theorem!

If we see — log p(f) as the “description” length of f (think Huffman).
Our result true with probability ¢*

lo +lo
§(F.S) < \/2 S5 o6

says that picking a classifier with a long description leads to a bad
control on the test error.
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Prior on C
This is a philosophical theorem!

If we see — log p(f) as the “description” length of f (think Huffman).
Our result true with probability ¢*

lo +lo
(F.8) < \/2 el o6

says that picking a classifier with a long description leads to a bad
control on the test error.

Entities should not be multiplied unnecessarily.

Principle of parsimony of William of Occam (1280 — 1349). Also
known as Occam’s Razor.
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The end
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