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Until now, we have dealt with image sets that could fit in memory, and we
manipulated them as regular tensors, e.g.

train_set = torchvision.datasets.MNIST(root = data_dir,
train = True, download = True)

train_input = train_set.data.view(-1, 1, 28, 28).float()
train_targets = train_set.targets

However, large sets do not fit in memory, and samples have to be constantly
loaded during training.

ImageNet LSVRC 2012 Images 151Gb

LSUN (all classes) Images 1.7Tb

OSCAR Text 6Tb

This requires a [sophisticated] machinery to parallelize the loading itself, but
also the normalization, and data-augmentation operations.
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PyTorch offers the torch.utils.data.DataLoader object which combines a
data-set and a sampling policy to create an iterator over mini-batches.

Standard data-sets are available in torchvision.datasets, and they allow to
apply transformations over the images or the labels transparently.

If needed, torchvision.datasets.ImageFolder creates a data-set from files
located in a folder, and torch.utils.data.TensorDataset from a tensor.
The latter is useful for synthetic toy examples or small data-sets.
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from torch.utils.data import DataLoader
from torchvision import datasets, transforms

data_dir = os.environ.get('PYTORCH_DATA_DIR') or './data/mnist/'

train_transforms = transforms.Compose(
[

transforms.ToTensor(),
transforms.Normalize(mean = (0.1302,), std = (0.3069, ))

]
)

train_loader = DataLoader(
datasets.MNIST(root = data_dir, train = True, download = True,

transform = train_transforms),
batch_size = 100,
num_workers = 4,
shuffle = True,
pin_memory = torch.cuda.is_available()

)
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Given this train_loader, we can now re-write our training procedure with a
loop over the mini-batches

for e in range(nb_epochs):
for input, targets in iter(train_loader):

input, targets = input.to(device), targets.to(device)

output = model(input)
loss = criterion(output, targets)

model.zero_grad()
loss.backward()
optimizer.step()
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Example of neuro-surgery and fine-tuning in PyTorch
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As an example of re-using a network and fine-tuning it, we will construct a
network for CIFAR10 composed of:

• the first layer of an [already trained] AlexNet,

• several resnet blocks,

• a final channel-wise averaging, using nn.AvgPool2d, and

• a final fully connected linear layer nn.Linear.

During training, we will keep the AlexNet features frozen for a few epochs. This
is done by setting requires_grad of the related Parameters to False.
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data_dir = os.environ.get('PYTORCH_DATA_DIR') or './data/cifar10/'

num_workers = 4
batch_size = 64

transform = torchvision.transforms.ToTensor()

train_set = datasets.CIFAR10(root = data_dir, train = True,
download = True, transform = transform)

train_loader = utils.data.DataLoader(train_set, batch_size = batch_size,
shuffle = True, num_workers = num_workers)

test_set = datasets.CIFAR10(root = data_dir, train = False,
download = True, transform = transform)

test_loader = utils.data.DataLoader(test_set, batch_size = batch_size,
shuffle = False, num_workers = num_workers)
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class ResBlock(nn.Module):
def __init__(self, nb_channels, kernel_size):

super().__init__()

self.conv1 = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)

self.bn1 = nn.BatchNorm2d(nb_channels)

self.conv2 = nn.Conv2d(nb_channels, nb_channels, kernel_size,
padding = (kernel_size-1)//2)

self.bn2 = nn.BatchNorm2d(nb_channels)

def forward(self, x):
y = self.bn1(self.conv1(x))
y = F.relu(y)
y = self.bn2(self.conv2(y))
y += x
y = F.relu(y)
return y
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class Monster(nn.Module):
def __init__(self, nb_blocks, nb_channels):

super().__init__()

alexnet = torchvision.models.alexnet(weights = 'IMAGENET1K_V1')

self.features = nn.Sequential(alexnet.features[0], nn.ReLU(inplace = True))

dummy = self.features(torch.zeros(1, 3, 32, 32)).size()
alexnet_nb_channels = dummy[1]
alexnet_map_size = tuple(dummy[2:4])

self.conv = nn.Conv2d(alexnet_nb_channels, nb_channels, kernel_size = 1)

self.resblocks = nn.Sequential(
*(ResBlock(nb_channels, kernel_size = 3) for _ in range(nb_blocks))

)

self.avg = nn.AvgPool2d(kernel_size = alexnet_map_size)
self.fc = nn.Linear(nb_channels, 10)
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def forward(self, x):
x = self.features(x)
x = F.relu(self.conv(x))
x = self.resblocks(x)
x = F.relu(self.avg(x))
x = x.view(x.size(0), -1)
x = self.fc(x)
return x

François Fleuret Deep learning / 8.5. DataLoader and neuro-surgery 11 / 13



nb_epochs = 50
nb_blocks, nb_channels = 8, 64

model, criterion = Monster(nb_blocks, nb_channels), nn.CrossEntropyLoss()

model.to(device)
criterion.to(device)

optimizer = torch.optim.Adam(model.parameters(), lr = 1e-2)

for e in range(nb_epochs):
# Freeze the features during half of the epochs
for p in model.features.parameters():

p.requires_grad = e >= nb_epochs // 2

acc_loss = 0.0

for input, targets in iter(train_loader):
input, targets = input.to(device), targets.to(device)

output = model(input)
loss = criterion(output, targets)
acc_loss += loss.item()

optimizer.zero_grad()
loss.backward()
optimizer.step()

print(e, acc_loss)
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nb_test_errors, nb_test_samples = 0, 0

model.eval()

for input, targets in iter(test_loader):
input, targets = input.to(device), targets.to(device)

output = model(input)
wta = torch.argmax(output.data, 1).view(-1)

for i in range(targets.size(0)):
nb_test_samples += 1
if wta[i] != targets[i]: nb_test_errors += 1

test_error = 100 * nb_test_errors / nb_test_samples
print(f'test_error {test_error:.02f}% ({nb_test_errors}/{nb_test_samples})')
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The end
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