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Beside dimension reduction, autoencoders can capture dependencies between
signal components to restore a degraded input.

In that case, we can ignore the encoder/decoder structure, and such a model

ϕ : 𝒳 → 𝒳 .

is referred to as a denoising autoencoder.

The goal is not anymore to optimize ϕ so that

ϕ(X ) ≃ X

but, given a perturbation X̃ of the signal X , to restore the signal, hence

ϕ(X̃ ) ≃ X .
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We can illustrate this notion in 2d with an additive Gaussian noise, and the
quadratic loss, hence

ŵ = argmin
w

1

N

N∑
n=1

∥xn − ϕ(xn + ϵn;w)∥2 ,

where xn are the data samples, and ϵn are Gaussian random noise vectors.
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model = nn.Sequential(
nn.Linear(2, 100),
nn.ReLU(),
nn.Linear(100, 2)

)

batch_size, nb_epochs = 100, 1000
optimizer = torch.optim.Adam(model.parameters(), lr = 1e-3)
mse = nn.MSELoss()

for e in range(nb_epochs):
for input in data.split(batch_size):

noise = input.new(input.size()).normal_(0, 0.1)
output = model(input + noise)
loss = mse(output, input)

optimizer.zero_grad()
loss.backward()
optimizer.step()
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We can do the same on MNIST, for which we keep our deep autoencoder, and
ignore its encoder/decoder structure.

corrupted_input = corruptor.corrupt(input)

output = model(corrupted_input)
loss = 0.5 * (output - input).pow(2).sum() / input.size(0)

optimizer.zero_grad()
loss.backward()
optimizer.step()

We consider three types of corruptions, that go beyond additive noise:

Original Pixel erasure Blurring Block masking
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Original

Corrupted (p = 0.5)

Reconstructed
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Original

Corrupted (p = 0.9)

Reconstructed
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Original

Corrupted (σ = 2)

Reconstructed
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Original

Corrupted (σ = 4)

Reconstructed
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Original

Corrupted (10× 10)

Reconstructed
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Original

Corrupted (16× 16)

Reconstructed
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A key weakness of this type of denoising is that the posterior

µX |X̃

may be non-deterministic, possibly multi-modal.

If we train an autoencoder with the quadratic loss, the best reconstruction is

ϕ(X̃ ) = E
[
X
∣∣∣ X̃] ,

which may be very unlikely under µX |X̃ .

µX |X̃

E
[
X
∣∣∣ X̃]
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This phenomenon happens here in the area marked with the red circle. Points
there can be noisy versions of points originally in either of the two extremities of
the open circle, hence minimizing the MSE puts the denoised result in the
middle of the opening, even though the density has no mass there.
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We can clarify this phenomenon given an x̃ (in blue) by sampling a large
number of pairs (X , X̃ ), keeping only the X s whose X̃ is very close to x̃ ,
resulting in a sampling of X |X̃ = x̃ (in red), whose mean E[X |X̃ = x̃] (in
green) minimizes the MSE.
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We observe the same phenomenon with very corrupted MNIST digits.

X X̃

Mods of X | X̃

ϕ(X̃ ) ≃ E
[
X
∣∣∣ X̃]
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This can be mitigated by using in place of loss a second network that assesses if
the output is realistic.

Such methods are called adversarial since the second network aims at spotting
the mistakes of the first, and the first aims at fooling the second.

It can be combined with a stochastic denoiser that samples an X according to
X | X̃ instead of computing a deterministic reconstruction.

We will come back to that in lecture 11.1. “Generative Adversarial Networks”.
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Noise2Noise
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Denoising can be achieved without clean samples, if the noise is additive and
unbiased. Consider ϵ and δ two unbiased and independent noises. We have

E
[
∥ϕ(X + ϵ; θ)− (X + δ)∥2

]
= E

[
∥(ϕ(X + ϵ; θ)− X )− δ∥2

]
= E

[
∥ϕ(X + ϵ; θ)− X∥2

]
− 2E

[
δ⊤(ϕ(X + ϵ; θ)− X )

]
+ E

[
∥δ∥2

]
= E

[
∥ϕ(X + ϵ; θ)− X∥2

]
− 2E

[
δ
]⊤︸ ︷︷ ︸

=0

E
[
ϕ(X + ϵ; θ)− X

]
+ E

[
∥δ∥2

]
= E

[
∥ϕ(X + ϵ; θ)− X∥2

]
+ E

[
∥δ∥2

]
.

Hence

argmin
θ

E
[
∥ϕ(X + ϵ; θ)− (X + δ)∥2

]
= argmin

θ
E
[
∥ϕ(X + ϵ; θ)− X∥2

]
.

Using L1 instead of L2 estimates the median instead of the mean, and similarly
is stable to noise that keeps the median unchanged.
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Lehtinen et al. (2018)’s Noise2Noise approach uses this for image restoration,
as many existing image generative processes induce an unbiased noise.

In many image restoration tasks, the expectation of the corrupted input
data is the clean target that we seek to restore. Low-light photography
is an example: a long, noise-free exposure is the average of short,
independent, noisy exposures.

Physically accurate renderings of virtual environments are most often
generated through a process known as Monte Carlo path tracing. /.../
The Monte Carlo integrator is constructed such that the intensity of
each pixel is the expectation of the random path sampling process, i.e.,
the sampling noise is zero-mean.

(Lehtinen et al., 2018)
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Noise2Noise: Learning Image Restoration without Clean Data

A. Appendix
A.1. Network architecture

Table 2 shows the structure of the U-network (Ronneberger
et al., 2015) used in all of our tests, with the exception
of the first test in Section 3.1 that used the “RED30” net-
work (Mao et al., 2016). For all basic noise and text removal
experiments with RGB images, the number of input and
output channels were n = m = 3. For Monte Carlo de-
noising we had n = 9,m = 3, i.e., input contained RGB
pixel color, RGB albedo, and a 3D normal vector per pixel.
The MRI reconstruction was done with monochrome im-
ages (n = m = 1). Input images were represented in range
[−0.5, 0.5].

A.2. Training parameters

The network weights were initialized following He et
al. (2015). No batch normalization, dropout or other reg-
ularization techniques were used. Training was done us-
ing ADAM (Kingma & Ba, 2015) with parameter values
β1 = 0.9, β2 = 0.99, ε = 10−8.

Learning rate was kept at a constant value during training
except for a brief rampdown period at where it was smoothly
brought to zero. Learning rate of 0.001 was used for all
experiments except Monte Carlo denoising, where 0.0003
was found to provide better stability. Minibatch size of 4
was used in all experiments.

A.3. Finite corrupted data in L2 minimization

Let us compute the expected error in L2 norm minimization
task when corrupted targets {ŷi}Ni=1 are used in place of
the clean targets {yi}Ni=1, with N a finite number. Let yi
be arbitrary random variables, such that E{ŷi} = yi. As
usual, the point of least deviation is found at the respec-
tive mean. The expected squared difference between these
means across realizations of the noise is then:

Eŷ

[
1

N

∑

i

yi −
1

N

∑

i

ŷi

]2

=
1

N2

[
Eŷ(

∑

i

yi)
2 − 2Eŷ

[
(
∑

i

yi)(
∑

i

ŷi)

]
+ Eŷ(

∑

i

ŷi)
2

]

=
1

N2
Var(

∑

i

ŷi)

=
1

N


 1

N

∑

i

∑

j

Cov(ŷi, ŷj)




(8)

In the intermediate steps, we have used Eŷ(
∑
i ŷi) =

∑
i yi

and basic properties of (co)variance. If the corruptions are

NAME Nout FUNCTION

INPUT n
ENC CONV0 48 Convolution 3× 3
ENC CONV1 48 Convolution 3× 3
POOL1 48 Maxpool 2× 2
ENC CONV2 48 Convolution 3× 3
POOL2 48 Maxpool 2× 2
ENC CONV3 48 Convolution 3× 3
POOL3 48 Maxpool 2× 2
ENC CONV4 48 Convolution 3× 3
POOL4 48 Maxpool 2× 2
ENC CONV5 48 Convolution 3× 3
POOL5 48 Maxpool 2× 2
ENC CONV6 48 Convolution 3× 3
UPSAMPLE5 48 Upsample 2× 2
CONCAT5 96 Concatenate output of POOL4
DEC CONV5A 96 Convolution 3× 3
DEC CONV5B 96 Convolution 3× 3
UPSAMPLE4 96 Upsample 2× 2
CONCAT4 144 Concatenate output of POOL3
DEC CONV4A 96 Convolution 3× 3
DEC CONV4B 96 Convolution 3× 3
UPSAMPLE3 96 Upsample 2× 2
CONCAT3 144 Concatenate output of POOL2
DEC CONV3A 96 Convolution 3× 3
DEC CONV3B 96 Convolution 3× 3
UPSAMPLE2 96 Upsample 2× 2
CONCAT2 144 Concatenate output of POOL1
DEC CONV2A 96 Convolution 3× 3
DEC CONV2B 96 Convolution 3× 3
UPSAMPLE1 96 Upsample 2× 2
CONCAT1 96+n Concatenate INPUT

DEC CONV1A 64 Convolution 3× 3
DEC CONV1B 32 Convolution 3× 3
DEV CONV1C m Convolution 3× 3, linear act.

Table 2. Network architecture used in our experiments. Nout de-
notes the number of output feature maps for each layer. Number
of network input channels n and output channels m depend on
the experiment. All convolutions use padding mode “same”, and
except for the last layer are followed by leaky ReLU activation
function (Maas et al., 2013) with α = 0.1. Other layers have linear
activation. Upsampling is nearest-neighbor.

mutually uncorrelated, the last row simplifies to

1

N

[
1

N

∑

i

Var(yi)

]
(9)

In either case, the variance of the estimate is the average
(co)variance of the corruptions, divided by the number of
samples N . Therefore, the error approaches zero as the
number of samples grows. The estimate is unbiased in the

(Lehtinen et al., 2018)
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Noise2Noise: Learning Image Restoration without Clean Data

Input, 8 spp L2 with x̂, ŷ L2 with T (x̂), ŷ L2 with T (x̂), T (ŷ) LHDR with x̂, ŷ LHDR with T (x̂), ŷ Reference, 32k spp
11.32 dB 25.46 dB 25.39 dB 15.50 dB 29.05 dB 30.09 dB PSNR

Figure 6. Comparison of various loss functions for training a Monte Carlo denoiser with noisy target images rendered at 8 samples per
pixel (spp). In this high-dynamic range setting, our custom relative loss LHDR is clearly superior to L2. Applying a non-linear tone map to
the inputs is beneficial, while applying it to the target images skews the distribution of noise and leads to wrong, visibly too dark results.

(a) Input (64 spp), 23.93 dB (b) Noisy targets, 32.42 dB (c) Clean targets, 32.95 dB (d) Reference (131k spp)

Figure 7. Denoising a Monte Carlo rendered image. (a) Image rendered with 64 samples per pixel. (b) Denoised 64 spp input, trained
using 64 spp targets. (c) Same as previous, but trained on clean targets. (d) Reference image rendered with 131 072 samples per pixel.
PSNR values refer to the images shown here, see text for averages over the entire validation set.
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Figure 8. Online training PSNR during a 1000-frame flythrough
of the scene in Figure 6. Noisy target images are almost as good
for learning as clean targets, but are over 2000× faster to render
(190 milliseconds vs 7 minutes per frame in this scene). Both
denoisers offer a substantial improvement over the noisy input.

prising, since the training dataset contained only a limited
number of training pairs (and thus noise realizations) due
to the cost of generating the clean target images, and we
wanted to test both methods using matching data. That
said, given that noisy targets are 2000 times faster to pro-
duce, one could trivially produce a larger quantity of them
and still realize vast gains. The finite capture budget study
(Section 3.1) supports this hypothesis.

Online training Since it can be tedious to collect a suf-
ficiently large corpus of Monte Carlo images for training
a generally applicable denoiser, a possibility is to train a
model specific to a single 3D scene, e.g., a game level or a

movie shot (Chaitanya et al., 2017). In this context, it can
even be desirable to train on-the-fly while walking through
the scene. In order to maintain interactive frame rates, we
can afford only few samples per pixel, and thus both input
and target images will be inherently noisy.

Figure 8 shows the convergence plots for an experiment
where we trained a denoiser from scratch for the duration
of 1000 frames in a scene flythrough. On an NVIDIA Titan
V GPU, path tracing a single 512×512 pixel image with
8 spp took 190 ms, and we rendered two images to act
as input and target. A single network training iteration
with a random 256×256 pixel crop took 11.25 ms and we
performed eight of them per frame. Finally, we denoised
both rendered images, each taking 15 ms, and averaged
the result to produce the final image shown to the user.
Rendering, training and inference took 500 ms/frame.

Figure 8 shows that training with clean targets does not
perform appreciably better than noisy targets. As rendering
a single clean image takes approx. 7 minutes in this scene
(resp. 190 ms for a noisy target), the quality/time tradeoff
clearly favors noisy targets.

3.4. Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) produces volumetric
images of biological tissues essentially by sampling the

(Lehtinen et al., 2018)
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Noise2Noise: Learning Image Restoration without Clean Data

Fourier transform (the “k-space”) of the signal. Modern
MRI techniques have long relied on compressed sensing
(CS) to cheat the Nyquist-Shannon limit: they undersample
k-space, and perform non-linear reconstruction that removes
aliasing by exploiting the sparsity of the image in a suitable
transform domain (Lustig et al., 2008).

We observe that if we turn the k-space sampling into a ran-
dom process with a known probability density p(k) over the
frequencies k, our main idea applies. In particular, we model
the k-space sampling operation as a Bernoulli process where
each individual frequency has a probability p(k) = e−λ|k|

of being selected for acquisition.4 The frequencies that are
retained are weighted by the inverse of the selection proba-
bility, and non-chosen frequencies are set to zero. Clearly,
the expectation of this “Russian roulette” process is the
correct spectrum. The parameter λ controls the overall frac-
tion of k-space retained; in the following experiments, we
choose it so that 10% of the samples are retained relative to a
full Nyquist-Shannon sampling. The undersampled spectra
are transformed to the primal image domain by the standard
inverse Fourier transform. An example of an undersam-
pled input/target picture, the corresponding fully sampled
reference, and their spectra, are shown in Figure 9(a, d).

Now we simply set up a regression problem of the form (6)
and train a convolutional neural network using pairs of two
independent undersampled images x̂ and ŷ of the same vol-
ume. As the spectra of the input and target are correct on ex-
pectation, and the Fourier transform is linear, we use the L2

loss. Additionally, we improve the result slightly by enforc-
ing the exact preservation of frequencies that are present in
the input image x̂ by Fourier transforming the result fθ(x̂),
replacing the frequencies with those from the input, and
transforming back to the primal domain before computing
the loss: the final loss reads (F−1(Rx̂(F(fθ(x̂)))) − ŷ)2,
where R denotes the replacement of non-zero frequencies
from the input. This process is trained end-to-end.

We perform experiments on 2D slices extracted from the
IXI brain scan MRI dataset.5 To simulate spectral sampling,
we draw random samples from the FFT of the (already re-
constructed) images in the dataset. Hence, in deviation from
actual MRI samples, our data is real-valued and has the
periodicity of the discrete FFT built-in. The training set
contained 5000 images in 256×256 resolution from 50 sub-
jects, and for validation we chose 1000 random images from
10 different subjects. The baseline PSNR of the sparsely-
sampled input images was 20.03 dB when reconstructed
directly using IFFT. The network trained for 300 epochs

4Our simplified example deviates from practical MRI in the
sense that we do not sample the spectra along 1D trajectories.
However, we believe that designing pulse sequences that lead to
similar pseudo-random sampling characteristics is straightforward.

5http://brain-development.org/ixi-dataset→ T1 images.

Im
ag

e
Sp

ec
tr

um

(a) Input (b) Noisy trg. (c) Clean trg. (d) Reference
18.93 dB 29.77 dB 29.81 dB

Figure 9. MRI reconstruction example. (a) Input image with only
10% of spectrum samples retained and scaled by 1/p. (b) Recon-
struction by a network trained with noisy target images similar
to the input image. (c) Same as previous, but training done with
clean target images similar to the reference image. (d) Original,
uncorrupted image. PSNR values refer to the images shown here,
see text for averages over the entire validation set.

with noisy targets reached an average PSNR of 31.74 dB
on the validation data, and the network trained with clean
targets reached 31.77 dB. Here the training with clean tar-
gets is similar to prior art (Wang et al., 2016; Lee et al.,
2017). Training took 13 hours on an NVIDIA Tesla P100
GPU. Figure 9(b, c) shows an example of reconstruction re-
sults between convolutional networks trained with noisy and
clean targets, respectively. In terms of PSNR, our results
quite closely match those reported in recent work.

4. Discussion
We have shown that simple statistical arguments lead to new
capabilities in learned signal recovery using deep neural
networks; it is possible to recover signals under complex
corruptions without observing clean signals, without an
explicit statistical characterization of the noise or other cor-
ruption, at performance levels equal or close to using clean
target data. That clean data is not necessary for denoising
is not a new observation: indeed, consider, for instance, the
classic BM3D algorithm (Dabov et al., 2007) that draws
on self-similar patches within a single noisy image. We
show that the previously-demonstrated high restoration per-
formance of deep neural networks can likewise be achieved
entirely without clean data, all based on the same general-
purpose deep convolutional model. This points the way to
significant benefits in many applications by removing the
need for potentially strenuous collection of clean data.

AmbientGAN (Ashish Bora, 2018) trains generative adver-
sarial networks (Goodfellow et al., 2014) using corrupted
observations. In contrast to our approach, AmbientGAN
needs an explicit forward model of the corruption. We find
combining ideas along both paths intriguing.

(Lehtinen et al., 2018)
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Super-resolution
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A special case of denoising is to increase an image resolution. We use an
encoder/decoder whose encoder’s input is smaller than the decoder’s output.

Encoder

Tensor sizes / operations

1×14×14

nn.Conv2d(1, 32, kernel_size=5, stride=1)
14

×1032×10×10

nn.Conv2d(32, 32, kernel_size=5, stride=1)
10

×632×6×6

nn.Conv2d(32, 32, kernel_size=4, stride=1)
6

×332×3×3

nn.Conv2d(32, 32, kernel_size=3, stride=1)
3

×132×1×1
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MNISTUpscaler(
(encoder): Sequential(

(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
(3): ReLU(inplace=True)
(4): Conv2d(32, 32, kernel_size=(4, 4), stride=(1, 1))
(5): ReLU(inplace=True)
(6): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1))

)
(decoder): Sequential(

(0): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(1, 1))
(1): ReLU(inplace=True)
(2): ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(2, 2))
(3): ReLU(inplace=True)
(4): ConvTranspose2d(32, 32, kernel_size=(4, 4), stride=(2, 2))
(5): ReLU(inplace=True)
(6): ConvTranspose2d(32, 32, kernel_size=(5, 5), stride=(1, 1))
(7): ReLU(inplace=True)
(8): ConvTranspose2d(32, 1, kernel_size=(5, 5), stride=(1, 1))

)
)
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for original in train_input.split(batch_size):
input = F.avg_pool2d(original, kernel_size = 2)
output = model(input)
loss = (output - original).pow(2).sum() / output.size(0)

optimizer.zero_grad()
loss.backward()
optimizer.step()
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Original

Input

Bilinear interpolation
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Original

Input

Autoencoder output
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Lim et al. (2017) use two different resnets.

EDSR MDSR
Nb blocks 32 80
Channels 256 64
Nb parameters 43M 8M

img034 from Urban100 [10]

HR
(PSNR / SSIM)

Bicubic
(21.41 dB / 0.4810)

A+ [27]
(22.21 dB / 0.5408)

SRCNN [4]
(22.33 dB / 0.5461)

VDSR [11]
(22.62 dB / 0.5657)

SRResNet [14]
(23.14 dB / 0.5891)

EDSR+ (Ours)
(23.48 dB / 0.6048)

MDSR+ (Ours)
(23.46 dB / 0.6039)

img062 from Urban100 [10]

HR
(PSNR / SSIM)

Bicubic
(19.82 dB / 0.6471)

A+ [27]
(20.43 dB 0.7145)

SRCNN [4]
(20.61 dB / 0.7218)

VDSR [11]
(20.75 dB / 0.7504)

SRResNet [14]
(21.70 dB / 0.8054)

EDSR+ (Ours)
(22.70 dB / 0.8537)

MDSR+ (Ours)
(22.66 dB / 0.8508)

0869 from DIV2K [26]

HR
(PSNR / SSIM)

Bicubic
(22.66 dB / 0.8025)

A+ [27]
(23.10 dB / 0.8251)

SRCNN [4]
(23.14 dB / 0.8280)

VDSR [11]
(23.36 dB / 0.8365)

SRResNet [14]
(23.71 dB / 0.8485)
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Autoencoders as self-training
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Vincent et al. (2010) interpret training the autoencoder as maximizing the
mutual information between the input and the latent states.

Let X be a sample, Z = f (X ; θ) its latent representation, and q(x , z) the
distribution of (X ,Z).

We have

argmax
θ

I(X ;Z) = argmax
θ

Eq(X ,Z)

[
log q(X | Z)

]
.

However, there is no expression of q(X | Z) in any reasonable setup.
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However, for any distribution p we have

Eq(X ,Z)

[
log q(X | Z)

]
≥ Eq(X ,Z)

[
log p(X | Z)

]
.

So we can in particular try to find a “good p”, so that the right term is a good
approximation of the left one.
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If we consider the following model for p

p ( · | Z = z) = 𝒩 (g(z; η), σ)

where g is deterministic and σ fixed

, we get

Eq(X ,Z)

[
log p(X | Z)

]
= −

1

2σ2
Eq(X ,Z)

[
∥X − g(f (X ; θ); η)∥2

]
+ k.

If optimizing η makes the bound tight, the final loss is the reconstruction error

argmax
θ

I(X ;Z) ≃ argmin
θ

(
min
η

1

N

N∑
n=1

∥xn − g(f (xn; θ); η)∥2
)

.

This abstract view of the encoder as “maximizing information” justifies its
use to build generic encoding layers.
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In the perspective of building a good feature representation, just retaining
information is not enough, otherwise the identity would be a good choice.

In their work, Vincent et al. consider a denoising auto-encoder, which makes
the model retain information about structures beyond local noise.
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V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Figure 6: Weight decay vs. Gaussian noise. We show typical filters learnt from natural image
patches in the over-complete case (200 hidden units).Left: regular autoencoder with
weight decay. We tried a wide range of weight-decay values and learningrates: filters
never appeared to capture a more interesting structure than what is shownhere. Note
that some local blob detectors are recovered compared to using no weightdecay at all
(Figure 5 right).Right: a denoising autoencoder with additive Gaussian noise (σ = 0.5)
learns Gabor-like local oriented edge detectors. Clearly the filters learntare qualitatively
very different in the two cases.

yielded a mixture of edge detectors and grating filters. Clearly different corruption types and levels
can yield qualitatively different filters. But it is interesting to note that all three noise types we
experimented with were able to yield some potentially useful edge detectors.

5.2 Feature Detectors Learnt from Handwritten Digits

We also trained denoising autoencoders on the 28× 28 gray-scale images of handwritten digits
from the MNIST data set. For this experiment, we used denoising autoencoders with tied weights,
cross-entropy reconstruction error, and zero-masking noise. The goal was to better understand the
qualitative effect of the noise level. So we trained several denoising autoencoders, all starting from
the same initial random point in weight space, butwith different noise levels.Figure 8 shows some
of the resulting filters learnt and how they are affected as we increase thelevel of corruption. With
0% corruption, the majority of the filters appear totally random, with only a few that specialize as
little ink blob detectors. With increased noise levels, a much larger proportion of interesting (visibly
non random and with a clear structure) feature detectors are learnt. These include local oriented
stroke detectors and detectors of digit parts such as loops. It was to be expected that denoising a
more corrupted input requires detecting bigger, less local structures: the denoising auto-encoder
must rely on longer range statistical dependencies and pool evidence from a larger subset of pixels.
Interestingly, filters that start from the same initial random weight vector often look like they “grow”
from random, to local blob detector, to slightly bigger structure detectors such as a stroke detector,
as we use increased noise levels. By “grow” we mean that the slightly largerstructure learnt at a
higher noise level often appears related to the smaller structure obtained atlower noise levels, in
that they share about the same position and orientation.

3388

(Vincent et al., 2010)
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STACKED DENOISING AUTOENCODERS

Figure 7: Filters obtained on natural image patches by denoising autoencoders using other noise
types.Left: with 10% salt-and-pepper noise, we obtain oriented Gabor-like filters. They
appear slightly less localized than when using Gaussian noise (contrast withFigure 6
right). Right: with 55% zero-masking noise we obtain filters that look like oriented
gratings. For the three considered noise types, denoising training appears to learn filters
that capture meaningful natural image statistics structure.

6. Experiments on Stacked Denoising Autoencoders

In this section, we evaluate denoising autoencoders as a pretraining strategy for building deep net-
works, using the stacking procedure that we described in Section 3.5. Weshall mainly compare the
classification performance of networks pretrained by stacking denoisingautoencoders (SDAE), ver-
sus stacking regular autoencoders (SAE), versus stacking restrictedBoltzmann machines (DBN),
on a benchmark of classification problems.

6.1 Considered Classification Problems and Experimental Methodology

We considered 10 classification problems, the details of which are listed in Table 1. They consist
of:

• The standard MNIST digit classification problem with 60000 training examples.

• The eight benchmark image classification problems used in Larochelle et al. (2007) which in-
clude more challenging variations of the MNIST digit classification problem (all with 10000
training examples), as well as three artificial 28× 28 binary image classification tasks.11

These problems were designed to be particularly challenging to current generic learning al-
gorithms (Larochelle et al., 2007). They are illustrated in Figure 9.

• A variation of thetzanetakisaudio genre classification data set (Bergstra, 2006) which con-
tains 10000 three-second audio clips, equally distributed among 10 musical genres: blues,
classical, country, disco, hiphop, pop, jazz, metal, reggae and rock. Each example in the set

11. The data sets for this benchmark are available athttp://www.iro.umontreal.ca/ ˜ lisa/icml2007 .

3389

(Vincent et al., 2010)

François Fleuret Deep learning / 7.3. Denoising autoencoders 36 / 38



Vincent et al. build deep MLPs whose layers are initialized successively as
encoders trained within a noisy autoencoder.

AutoencoderAutoencoderAutoencoder

A final classifying layer is added and the full structure can be fine-tuned.

This approach, and others in the same spirit (Hinton et al., 2006), were seen
as strategies to complement gradient-descent for building deep nets.
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V INCENT, LAROCHELLE, LAJOIE, BENGIO AND MANZAGOL

Data Set SVMrb f DBN-1 SAE-3 DBN-3 SDAE-3 (ν)

MNIST 1.40±0.23 1.21±0.21 1.40±0.23 1.24±0.22 1.28±0.22 (25%)
basic 3.03±0.15 3.94±0.17 3.46±0.16 3.11±0.15 2.84±0.15 (10%)
rot 11.11±0.28 14.69±0.31 10.30±0.27 10.30±0.27 9.53±0.26 (25%)
bg-rand 14.58±0.31 9.80±0.26 11.28±0.28 6.73±0.22 10.30±0.27 (40%)
bg-img 22.61±0.37 16.15±0.32 23.00±0.37 16.31±0.32 16.68±0.33 (25%)
bg-img-rot 55.18±0.44 52.21±0.44 51.93±0.44 47.39±0.44 43.76±0.43 (25%)
rect 2.15±0.13 4.71±0.19 2.41±0.13 2.60±0.14 1.99±0.12 (10%)
rect-img 24.04±0.37 23.69±0.37 24.05±0.37 22.50±0.37 21.59±0.36 (25%)
convex 19.13±0.34 19.92±0.35 18.41±0.34 18.63±0.34 19.06±0.34 (10%)
tzanetakis 14.41±2.18 18.07±1.31 16.15±1.95 18.38±1.64 16.02±1.04(0.05)

Table 3: Comparison of stacked denoising autoencoders (SDAE-3) with other models. Test error
rate on all considered classification problems is reported together with a 95%confidence
interval. Best performer is in bold, as well as those for which confidenceintervals overlap.
SDAE-3 appears to achieve performance superior or equivalent to thebest other model on
all problems exceptbg-rand. For SDAE-3, we also indicate the fractionν of corrupted
input components, or in case oftzanetakis, the standard deviation of the Gaussian noise, as
chosen by proper model selection. Note that SAE-3 is equivalent to SDAE-3 with ν = 0%.

grained series of experiments, we chose to concentrate on the hardest of the considered problems,
that is, the one with the most factors of variation:bg-img-rot.

We first examine how the proposed network training strategy behaves as we increase the capacity
of the model both in breadth (number of neurons per layer) and in depth (number of hidden layers).
Figure 10 shows the evolution of the performance as we increase the number of hidden layers from
1 to 3, for three different network training strategies: without any pretraining (standard MLP),
with ordinary autoencoder pretraining (SAE) and with denoising autoencoder pretraining (SDAE).
We clearly see a strict ordering: denoising pretraining being better than autoencoder pretraining
being better than no pretraining. The advantage appears to increase with the number of layers (note
that without pretraining it seems impossible to successfully train a 3 hidden layer network) and
with the number of hidden units. This general behavior is a typical illustration of what is gained
by pretraining deep networks with a good unsupervised criterion, and appears to be common to
several pretraining strategies. We refer the reader to Erhan et al. (2010) for an empirical study
and discussion regarding possible explanations for the phenomenon, centered on the observation of
regularizationeffects (we exploit the hypothesis that features ofX that help to captureP(X) also
help to captureP(Y|X)) andoptimizationeffects (unsupervised pre-training initializes parameters
near a betterlocal minimumof generalizationerror).

Notice that in tuning the hyperparameters for all classification performances so far reported, we
considered only a coarse choice of noise levelsν (namely 0%, 10%, 25%, or 40% of zero-masking
corruption for the image classification problems). Clearly it was not necessary to pick the noise
level very precisely to obtain good performances. In Figure 11 we examine in more details the
influence of the level of corruptionν using a more fine-grained grid for problembg-img-rot. We
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The end
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