Deep learning

6.4. Batch normalization

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE


https://fleuret.org/dlc/

We saw that maintaining proper statistics of the activations and derivatives was
a critical issue to allow the training of deep architectures.

Francois Fleuret Deep learning / 6.4. Batch normalization 1/16



We saw that maintaining proper statistics of the activations and derivatives was
a critical issue to allow the training of deep architectures.

It was the main motivation behind Xavier's weight initialization rule.

Francois Fleuret Deep learning / 6.4. Batch normalization 1/16



We saw that maintaining proper statistics of the activations and derivatives was
a critical issue to allow the training of deep architectures.

It was the main motivation behind Xavier's weight initialization rule.

A different approach consists of explicitly forcing the activation statistics during
the forward pass by re-normalizing them.

Batch normalization proposed by loffe and Szegedy (2015) was the first
method introducing this idea.

Francois Fleuret Deep learning / 6.4. Batch normalization 1/16



“Training Deep Neural Networks is complicated by the fact that the distribu-
tion of each layer’s inputs changes during training, as the parameters of
the previous layers change. This slows down the training by requiring lower
learning rates and careful parameter initialization /.../”

(loffe and Szegedy, 2015)

Francois Fleuret Deep learning / 6.4. Batch normalization

2/16



“Training Deep Neural Networks is complicated by the fact that the distribu-
tion of each layer’s inputs changes during training, as the parameters of
the previous layers change. This slows down the training by requiring lower
learning rates and careful parameter initialization /.../”

(loffe and Szegedy, 2015)

Batch normalization can be done anywhere in a deep architecture, and forces
the activations’ first and second order moments, so that the following layers do
not need to adapt to their drift.

Francois Fleuret Deep learning / 6.4. Batch normalization

2/16



During training batch normalization shifts and rescales according to the mean
and variance estimated on the batch.

Processing a batch jointly is unusual. Operations used in deep models
can virtually always be formalized per-sample.

Francois Fleuret Deep learning / 6.4. Batch normalization 3/16



Francois Fleuret

During training batch normalization shifts and rescales according to the mean
and variance estimated on the batch.

Processing a batch jointly is unusual. Operations used in deep models
can virtually always be formalized per-sample.

During test, it simply shifts and rescales according to the empirical moments
estimated during training.

Deep learning / 6.4. Batch normalization

3/16



If x, € RP,b=1,..., B are the samples in the batch, we first compute the
empirical per-component mean and variance on the batch

1B
Mbatch = B > %
b1
1B
. " 2
Vbatch = > (%6 — Mbatch)
b1

Francois Fleuret Deep learning / 6.4. Batch normalization 4 /16



If x, € RP,b=1,..., B are the samples in the batch, we first compute the
empirical per-component mean and variance on the batch

1 B
Mbatch = B > %

b=1
Ubatch = — Z (Xb = Fibatch)”

from which we compute normalized z, € RP, and outputs y, € RP

Xp — Mpatch
V' Vbatch + €
Yo =702z + B

Vbzl,...7B, Zp =

where © is the Hadamard component-wise product, and v € RP and g € RP
are parameters to optimize.

Francois Fleuret Deep learning / 6.4. Batch normalization 4 /16



During inference, batch normalization shifts and rescales independently each
component of the input x according to statistics estimated during training:

y=70 —F——=+8.

Hence, during inference, batch normalization performs a component-wise affine
transformation, and it processes samples independently.

Francois Fleuret Deep learning / 6.4. Batch normalization 5/16



Francois Fleuret

During inference, batch normalization shifts and rescales independently each
component of the input x according to statistics estimated during training:

y=70 —F——=+8.

Hence, during inference, batch normalization performs a component-wise affine
transformation, and it processes samples independently.

A As for dropout, the model behaves differently during train and test.

Deep learning / 6.4. Batch normalization

5/16



As dropout, batch normalization is implemented as separate modules that
process input components independently.

>>> bn = nn.BatchNorm1d(3)

>>> with torch.no_grad():
bn.bias.copy_(torch.tensor([2., 4., 8.1))
bn.weight.copy_(torch.tensor([1., 2., 3.]))

Parameter containing:
tensor([2., 4., 8.], requires_grad=True)
Parameter containing:
tensor([1., 2., 3.], requires_grad=True)

Francois Fleuret Deep learning / 6.4. Batch normalization 6 /16



As dropout, batch normalization is implemented as separate modules that
process input components independently.

>>> bn = nn.BatchNorm1d(3)

>>> with torch.no_grad():
bn.bias.copy_(torch.tensor([2., 4., 8.1))
bn.weight.copy_(torch.tensor([1., 2., 3.]))

Parameter containing:

tensor([2., 4., 8.], requires_grad=True)

Parameter containing:

tensor([1., 2., 3.1, requires_grad=True)

>>> x = torch.randn(1000, 3)

>>> x = x * torch.tensor([2., 5., 10.]) + torch.temsor([-10., 25., 3.])
>>> x.mean(0)

tensor([-9.9669, 25.0213, 2.4361])

>>> x.std(0)

tensor([1.9063, 5.0764, 9.7474]1)

Francois Fleuret Deep learning / 6.4. Batch normalization 6 /16



As dropout, batch normalization is implemented as separate modules that
process input components independently.

>>> bn = nn.BatchNorm1d(3)

>>> with torch.no_grad():
bn.bias.copy_(torch.tensor([2., 4., 8.1))
bn.weight.copy_(torch.tensor([1., 2., 3.]))

Parameter containing:

tensor([2., 4., 8.], requires_grad=True)

Parameter containing:

tensor([1., 2., 3.], requires_grad=True)

>>> x = torch.randn(1000, 3)

>>> x = x * torch.tensor([2., 5., 10.]) + torch.temsor([-10., 25., 3.])
>>> x.mean(0)

tensor([-9.9669, 25.0213, 2.4361])

>>> x.std(0)

tensor([1.9063, 5.0764, 9.7474]1)

>>> y = bn(x)

>>> y.mean(0)

tensor ([2.0000, 4.0000, 8.0000], grad_fn=<MeanBackward2>)
>>> y.std(0)

tensor([1.0005, 2.0010, 3.0015], grad_fn=<StdBackwardil>)

Francois Fleuret Deep learning / 6.4. Batch normalization 6 /16



As for any other module, we have to compute the derivatives of the loss & with
respect to the inputs values and the parameters.

For clarity, since components are processed independently, in what follows we
consider a single dimension and do not index it.

Francois Fleuret Deep learning / 6.4. Batch normalization 7/16



We have
B
R 1
Mpatch = Z Xb
B b=1

B
. 1 .
Vbatch = E Z (Xb - ’77bat::h)2
b=1

Xp — Mpatch
vb=1,...,B, z = ——
b V Vbatch +e€
Yb="2p+ .
From which
Vb=1,...,B, 8§ :fyaﬁ
0z Ay
0 0% dyp 0
. = o A, — -~ %b
Oy 5 Oyp Oy 5 O
0L Z 0L Oy 0L

9B oy 0B Oy,

Francois Fleuret Deep learning / 6.4. Batch normalization 8 /16



Every sample in the batch impacts the moment estimates, hence all the
outputs, which makes the derivative with respect to an input complicated.

o7 1, R
=—-z g —(xp —
6\7batch 2 (Vbatch + F) ; aZb (Xb batch)
0z i 0F
OMpatch vV Vbateh + € 0z
0z 0z 1 2 0% 1 0%
Vb=1,...,B, — = —— + == (X — Mpaten) + =
Oxp 0Zb \/Upateh + € B OVpatch =t B Ompatch

In standard implementations, test /i and ¥ are estimated with a moving average
during train, to avoid the need for an additional pass through the samples.

Francois Fleuret Deep learning / 6.4. Batch normalization

9/16



Francois Fleuret

Results on ImageNet's LSVRC2012:

= = = Inception
-~ BN-Baseline

BN-x5

BN-x30

+ 1+ BN-x5-Sigmoid

4 Steps to match Inception

10M 15M 20M 25M 30M
Figure 2: Single crop validation accuracy of Inception

training steps.

Model Steps to 72.2% Max accurac
Inception 31.0-10° 72.2%
BN-Baseline 13.3-10¢ 72.7%
BN-x5 2.1-10° 73.0%
BN-x30 2.7-10° 74.8%
BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalize
variants, the number of training steps required
reach the maximum accuracy of Inception (72.29
and its batch-normalized variants, vs. the number of and the maximum accuracy achieved by the n

work.

(loffe and Szegedy, 2015)

Deep learning / 6.4. Batch normalization

10/ 16



Results on ImageNet's LSVRC2012:

Model Steps to 72.2% Max accurac
Inception 31.0-10° 72.2%
BN-Baseline 13.3-10¢ 72.7%
e e BN-x5 2.1-10° 73.0%
B BN-x30 2.7-10° 74.8%
+ . BN-x5-Sigmoid BN-x5-Sigmoid 69.8%
4 Steps to match Inception
10M 15M 20m 25M 3om Figure 3: For Inception and the batch-normalize

variants, the number of training steps required
Figure 2: Single crop validation accuracy of Inception reach the maximum accuracy of Inception (72.29
and its batch-normalized variants, vs. the number of and the maximum accuracy achieved by the n
training steps. work.

(loffe and Szegedy, 2015)

The authors state that with batch normalization
e samples have to be shuffled carefully,
e the learning rate can be greater,
e dropout and local normalization are not necessary,

o L2 regularization influence should be reduced.

Francois Fleuret Deep learning / 6.4. Batch normalization

10/ 16



Deep MLP on a 2d “disc” toy example, with naive Gaussian weight
initialization, cross-entropy, standard SGD, = 0.1.

def create_model(with_batchnorm, dimh = 32, nb_layers = 16):
modules = []

modules.append(nn.Linear (2, dimh))
if with_batchnorm: modules.append(nn.BatchNormid(dimh))
modules . append (nn.ReLU())
for d in range(nb_layers):
modules.append(nn.Linear(dimh, dimh))
if with_batchnorm: modules.append(nn.BatchNormid(dimh))
modules . append(nn.ReLU())

modules.append (nn.Linear(dimh, 2))

return nn.Sequential (*modules)

We try different standard deviations for the weights

with torch.no_grad():
for p in model.parameters(): p.normal_(0, std)

Francois Fleuret Deep learning / 6.4. Batch normalization 11 /16



Francois Fleuret

60

50

N
o
L

w
o
L

Test error

20 1

10

Baseline
—— With batch normalization

1073 1072 107! 10° 10!
Weight std

Deep learning / 6.4. Batch normalization 12 /16



The position of batch normalization relative to the non-linearity is not clear.

“We add the BN transform immediately before the nonlinearity, by normalizing
x = Wu + b. We could have also normalized the layer inputs u, but since
u is likely the output of another nonlinearity, the shape of its distribution
is likely to change during training, and constraining its first and second
moments would not eliminate the covariate shift. In contrast, Wu + b
is more likely to have a symmetric, non-sparse distribution, that is 'more
Gaussian’ (Hyvarinen and Oja, 2000); normalizing it is likely to produce
activations with a stable distribution. "

(loffe and Szegedy, 2015)

Linear BN ReLU

Francois Fleuret Deep learning / 6.4. Batch normalization 13/ 16



The position of batch normalization relative to the non-linearity is not clear.

“We add the BN transform immediately before the nonlinearity, by normalizing
x = Wu + b. We could have also normalized the layer inputs u, but since
u is likely the output of another nonlinearity, the shape of its distribution
is likely to change during training, and constraining its first and second
moments would not eliminate the covariate shift. In contrast, Wu + b
is more likely to have a symmetric, non-sparse distribution, that is 'more
Gaussian’ (Hyvarinen and Oja, 2000); normalizing it is likely to produce
activations with a stable distribution. "

(loffe and Szegedy, 2015)

Linear BN ReLU

However, this argument goes both ways: activations after the non-linearity are
less “naturally normalized” and benefit more from batch normalization.
Experiments are generally in favor of this solution, which is the current default.

Linear RelLU BN

Francois Fleuret Deep learning / 6.4. Batch normalization 13/ 16



As for dropout, using properly batch normalization on a convolutional map
requires parameter-sharing.

The module torch.BatchNorm2d (respectively torch.BatchNorm3d) processes
samples as multi-channels 2d maps (respectively multi-channels 3d maps) and
normalizes each channel separately, with a v and a 3 for each.

Francois Fleuret Deep learning / 6.4. Batch normalization 14/ 16



Another normalization in the same spirit is the layer normalization proposed
by Ba et al. (2016).

Given a single sample x € RP, it normalizes the components of x, hence
normalizing activations across the layer instead of doing it across the batch

vd, yq

Francois Fleuret Deep learning / 6.4. Batch normalization 15/ 16



Another normalization in the same spirit is the layer normalization proposed
by Ba et al. (2016).

Given a single sample x € RP, it normalizes the components of x, hence
normalizing activations across the layer instead of doing it across the batch

vd, yq

Although it gives slightly worst improvements than BN it has the advantage of
behaving similarly in train and test, and processing samples individually.

Francois Fleuret Deep learning / 6.4. Batch normalization 15/ 16



These normalization schemes are examples of a larger class of methods.

Group Norm

E
s
z
P
8
2
E]

Layer Norm

atch Norm

(Wu and He, 2018)

Deep learning / 6.4. Batch normalization 16 / 16

Francois Fleuret



The end



References

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. CoRR, abs/1607.06450, 2016.

A. Hyvérinen and E. Oja. Independent component analysis: Algorithms and applications.
Neural Networks, 13(4-5):411-430, 2000.

S. loffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning

(ICML), 2015.

Y. Wu and K. He. Group normalization. CoRR, abs/1803.08494, 2018.




	References

