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Using deeper architectures has been key in improving performance in many

applications. For instance image classification:

model top-1 err. top-5 err.
VGG-16 [41] 28.07 933
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38
plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B

that only uses projections for increasing dimensions.
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“Notably, we did not depart from the classical ConvNet architecture of LeCun
et al. (1989), but improved it by substantially increasing the depth.”

(Simonyan and Zisserman, 2014)
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A theoretical analysis provides an intuition of how a network's output
“irregularity” grows:

e linearly with its width and
e exponentially with its depth.
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Let F be the set of piece-wise linear mappings on [0,1], and Vf € Z, let x(f)
be the minimum number of linear pieces in f.
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Let F be the set of piece-wise linear mappings on [0,1], and Vf € Z, let x(f)
be the minimum number of linear pieces in f.

Let o be the ReLU function

c:R—>R

x — max(0, x).
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Let # be the set of piece-wise linear mappings on [0, 1], and Vf € &, let x(f)
be the minimum number of linear pieces in f.

Let o be the ReLU function

c:R—>R

x +— max(0, x).

If we compose o and f € F, any linear piece that does not cross 0 remains a
single piece or disappears, and one that does cross 0 breaks into two, hence

Vf e F, r(o(f)) < 2k(f).
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Also, when summing functions, a change of slope in the sum happens only if
there was a change of slope in one of the operands.

fi
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Also, when summing functions, a change of slope in the sum happens only if
there was a change of slope in one of the operands.
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Also, when summing functions, a change of slope in the sum happens only if
there was a change of slope in one of the operands.

i+ h
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Consider a MLP with ReLU, D layers, a single input unit, and a single output
unit.

d o W(d—l)
vd=1,...,D,Vi, {Sf =2

j=1
P = U(Sid)

X
|
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Consider a MLP with ReLU, D layers, a single input unit, and a single output
unit.

X{J:x7
vd=1,..
y:xlD.

All the sfs and x,.ds are piece-wise linear functions of x

d o W(d—l)
., D, Vi, i = 2131
x®  =o(sf)
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Consider a MLP with ReLU, D layers, a single input unit, and a single output

unit.
xf:x7
d _=wl=D g g1 J
vd=1,...,D,Vi, { s *ijdl wipx Tt b
x®  =o(sf)
D
y=xp.

All the sfs and x,.ds are piece-wise linear functions of x with Vi, fi(s,.l) =1, and
wid—1) wid—1)

vd, i,n(xf’) = n(a(sf)) < 2/@(5}1) <2 JZ:; /-;(w,f’fj)afi_l + bf’) =2 JZ:; n(xjfj_1>

from which

vd, miax1<<x,-d) < 2wd-1) mjax;-e(xjd*1>
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Consider a MLP with ReLU, D layers, a single input unit, and a single output
unit.

d W(d Dod d=1 4 pd
Co=2s Wi b
x4 = cr(sl )

All the sfs and x's are piece-wise linear functions of x with Vi, (s!) = 1, and

wid—1) wid=1)

Vd,i,n(xf’) = /@( (s d)) < 2/1(5 ) <2 Z ( ,dJXJd ! +bd> =2 Z; H(dei
=

from which ys
vd, maxn(x ) < 2w(d-1) mjaxt@(x )

and we get the following bound for any ReLU MLP

D
K(y) <2P T w@
d=1
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Although this seems quite a pessimistic bound, we can hand-design a network
that [almost] reaches it:

Francois Fleuret Deep learning / 6.1. Benefits of depth 6 /12



Although this seems quite a pessimistic bound, we can hand-design a network
that [almost] reaches it:

(1)

S2

Francois Fleuret Deep learning / 6.1. Benefits of depth 6 /12



Although this seems quite a pessimistic bound, we can hand-design a network
that [almost] reaches it:

Layer 1

I I
| |
| |
| . |
| - |
| |
/:ZI :
|
| |

1 1
IS R
| |
| |
| |
| |
| |
Ny :
X:(lc) =X 3 3
| N |
i i
i i
| |
| |
| o X |

Francois Fleuret Deep learning / 6.1. Benefits of depth 6 /12



Although this seems quite a pessimistic bound, we can hand-design a network
that [almost] reaches it:

Layer 1

i i

I I

| |

I I

| > |

I I

/:ZI \

)

i I

1 1

Cos A

I I

I I

I I

I I

I I

N ye

o s
I N I

| |

| |

I I

I I

I sél) Xz(l) I

Francois Fleuret Deep learning / 6.1. Benefits of depth 6 /12



Although this seems quite a pessimistic bound, we can hand-design a network
that [almost] reaches it:

Layer 1
i i
| |
| |
| |
| |
| = -
| |
| |
/7| ‘
|
‘ |
b RS
| ‘
|
| ‘
| ‘
| |
AN !
A =x i !
: = -
‘ ‘
‘ ‘
| |
| |
| |
| sél) Xz(l) | 552)

Francois Fleuret Deep learning / 6.1. Benefits of depth 6 /12
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Although this seems quite a pessimistic bound,

that [almost] reaches it:
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we can hand-design a network
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Although this seems quite a pessimistic bound, we can hand-design a network
that [almost] reaches it:
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Although this seems quite a pessimistic bound, we can hand-design a network
that [almost] reaches it:
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So for any D*, there is a network with D* hidden layers and 2D* hidden units
which computes an f : [0,1] — [0, 1] of period 1/2P

Y

1
2D*
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Given g € #, it crosses % at most x(g) times

1
Hf—ng:/o 17(x) - g(2)]
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]

Given g € &, it crosses % at most x(g) times, which means that on at least

>
1
oD%

20" _ k(g) segments of length 1/2°", it is on one side of % and

1
If — glls :/0 17(x) - g(2)]
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]

Given g € &, it crosses % at most x(g) times, which means that on at least

>
_1_
oD%

2D _ (g) segments of length 1/2° it is on one side of % and
I~ gl = [ 1769~ £
D*
(27 20* / )f(x 77‘

1 <1_ ;gg)).
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]

Given g € &, it crosses % at most x(g) times, which means that on at least

—
L1
2D%
20" _ k(g) segments of length 1/2°", it is on one side of % and
I~ gl = [ 1769~ £
D*_ . o2
(@0 3307 | 103
Lt f-f(g)
16 20 )

And we multiply f by 16 to get rid of the ¢

[\
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So, considering ReLU MLPs with a single input/output, there exists a network
f with D* layers, and 2D* internal units, such that, for any network g with D
layers of sizes {W), ..., W(P)}, since r(g) < 20 TT5_, w(9):

o0 L
If—glli>1- D% H W),
d=1
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So, considering ReLU MLPs with a single input/output, there exists a network
f with D* layers, and 2D* internal units, such that, for any network g with D
layers of sizes {W), ..., W(P)}, since r(g) < 20 TT5_, w(9):

pL
If gl > 1 5 [T W
d=1

In particular, with g a single hidden layer network

w@)
2b* -

If —glh=1-2

To approximate f properly, the width w@ of g’s hidden layer has to increase
exponentially with f’s depth D*.
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So, considering ReLU MLPs with a single input/output, there exists a network
f with D* layers, and 2D* internal units, such that, for any network g with D
layers of sizes {W), ..., W(P)}, since r(g) < 20 TT5_, w(9):

pLI
> TTwe,
2 d=1

In particular, with g a single hidden layer network

If —glh>1-

w@)
2b* -

If —glh=1-2

To approximate f properly, the width w@ of g’s hidden layer has to increase
exponentially with f’s depth D*.

This is a simplified variant of results by Telgarsky (2015, 2016).
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Regarding over-fitting, over-parametrizing a deep model often improves test

performance, contrary to what the bias-variance decomposition predicts (Belkin
et al., 2018).

under-fitting . over-fitting

under-parameterized

Test risk
sclassical” : “modern”
regime . interpolating regime

over-parameterized

. Test risk

Risk
Risk

~

« 'Training risk ~ _ Training risk:
sweet spot\ ~—— S~ L _'A/Elti”fliﬁ(:‘ihr_eskolf .
Complexity of H Complexity of H

(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical U-shaped risk curve
arising from the bias-variance trade-off. (b) The double descent risk curve, which incorporates the U-shaped
risk curve (i.e., the “classical” regime) together with the observed behavior from using high complexity

function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The
predictors to the right of the interpolation threshold have zero training risk.

(Belkin et al., 2018)
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So we have good reasons to increase depth, but we saw that an important issue
then is to control the amplitude of the gradient, which is tightly related to
controlling activations.
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So we have good reasons to increase depth, but we saw that an important issue
then is to control the amplitude of the gradient, which is tightly related to
controlling activations.

In particular we have to ensure that

« the gradient does not ‘“vanish” (Bengio et al., 1994; Hochreiter et al.,
2001),

o gradient amplitude is homogeneous so that all parts of the network train at
the same rate (Glorot and Bengio, 2010),

¢ the gradient does not vary too unpredictably when the weights
change (Balduzzi et al., 2017).
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Modern techniques change the functional itself instead of trying to improve
training “from the outside” through penalty terms or better optimizers.
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Our main concern is to make the gradient descent work, even at the cost of
engineering substantially the class of functions.
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Modern techniques change the functional itself instead of trying to improve
training “from the outside” through penalty terms or better optimizers.

Our main concern is to make the gradient descent work, even at the cost of
engineering substantially the class of functions.

An additional issue for training very large architectures is the computational
cost, which often turns out to be the main practical problem.
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The end
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