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Choosing the network structure is a difficult exercise. There is no silver bullet.

• Re-use something “well known, that works”, or at least start from there,

• split feature extraction / inference (although this is debatable),

• modulate the capacity until it overfits a small subset, but does not overfit /
underfit the full set,

• capacity increases with more layers, more channels, larger receptive fields,
or more units,

• regularization to reduce the capacity or induce sparsity,

• identify common paths for siamese-like,

• identify what path(s) or sub-parts need more/less capacity,

• use knowledge about the “scale of meaningful context” to size the filters,

• grid-search all the variations that come to mind (and hopefully have farms
of GPUs to do so).

We will re-visit this list with additional regularization / normalization methods.

François Fleuret Deep learning / 5.6. Architecture choice and training protocol 1 / 9



Choosing the network structure is a difficult exercise. There is no silver bullet.

• Re-use something “well known, that works”, or at least start from there,

• split feature extraction / inference (although this is debatable),

• modulate the capacity until it overfits a small subset, but does not overfit /
underfit the full set,

• capacity increases with more layers, more channels, larger receptive fields,
or more units,

• regularization to reduce the capacity or induce sparsity,

• identify common paths for siamese-like,

• identify what path(s) or sub-parts need more/less capacity,

• use knowledge about the “scale of meaningful context” to size the filters,

• grid-search all the variations that come to mind (and hopefully have farms
of GPUs to do so).

We will re-visit this list with additional regularization / normalization methods.

François Fleuret Deep learning / 5.6. Architecture choice and training protocol 1 / 9



Choosing the network structure is a difficult exercise. There is no silver bullet.

• Re-use something “well known, that works”, or at least start from there,

• split feature extraction / inference (although this is debatable),

• modulate the capacity until it overfits a small subset, but does not overfit /
underfit the full set,

• capacity increases with more layers, more channels, larger receptive fields,
or more units,

• regularization to reduce the capacity or induce sparsity,

• identify common paths for siamese-like,

• identify what path(s) or sub-parts need more/less capacity,

• use knowledge about the “scale of meaningful context” to size the filters,

• grid-search all the variations that come to mind (and hopefully have farms
of GPUs to do so).

We will re-visit this list with additional regularization / normalization methods.

François Fleuret Deep learning / 5.6. Architecture choice and training protocol 1 / 9



Choosing the network structure is a difficult exercise. There is no silver bullet.

• Re-use something “well known, that works”, or at least start from there,

• split feature extraction / inference (although this is debatable),

• modulate the capacity until it overfits a small subset, but does not overfit /
underfit the full set,

• capacity increases with more layers, more channels, larger receptive fields,
or more units,

• regularization to reduce the capacity or induce sparsity,

• identify common paths for siamese-like,

• identify what path(s) or sub-parts need more/less capacity,

• use knowledge about the “scale of meaningful context” to size the filters,

• grid-search all the variations that come to mind (and hopefully have farms
of GPUs to do so).

We will re-visit this list with additional regularization / normalization methods.

François Fleuret Deep learning / 5.6. Architecture choice and training protocol 1 / 9



Choosing the network structure is a difficult exercise. There is no silver bullet.

• Re-use something “well known, that works”, or at least start from there,

• split feature extraction / inference (although this is debatable),

• modulate the capacity until it overfits a small subset, but does not overfit /
underfit the full set,

• capacity increases with more layers, more channels, larger receptive fields,
or more units,

• regularization to reduce the capacity or induce sparsity,

• identify common paths for siamese-like,

• identify what path(s) or sub-parts need more/less capacity,

• use knowledge about the “scale of meaningful context” to size the filters,

• grid-search all the variations that come to mind (and hopefully have farms
of GPUs to do so).

We will re-visit this list with additional regularization / normalization methods.

François Fleuret Deep learning / 5.6. Architecture choice and training protocol 1 / 9



Choosing the network structure is a difficult exercise. There is no silver bullet.

• Re-use something “well known, that works”, or at least start from there,

• split feature extraction / inference (although this is debatable),

• modulate the capacity until it overfits a small subset, but does not overfit /
underfit the full set,

• capacity increases with more layers, more channels, larger receptive fields,
or more units,

• regularization to reduce the capacity or induce sparsity,

• identify common paths for siamese-like,

• identify what path(s) or sub-parts need more/less capacity,

• use knowledge about the “scale of meaningful context” to size the filters,

• grid-search all the variations that come to mind (and hopefully have farms
of GPUs to do so).

We will re-visit this list with additional regularization / normalization methods.

François Fleuret Deep learning / 5.6. Architecture choice and training protocol 1 / 9



Choosing the network structure is a difficult exercise. There is no silver bullet.

• Re-use something “well known, that works”, or at least start from there,

• split feature extraction / inference (although this is debatable),

• modulate the capacity until it overfits a small subset, but does not overfit /
underfit the full set,

• capacity increases with more layers, more channels, larger receptive fields,
or more units,

• regularization to reduce the capacity or induce sparsity,

• identify common paths for siamese-like,

• identify what path(s) or sub-parts need more/less capacity,

• use knowledge about the “scale of meaningful context” to size the filters,

• grid-search all the variations that come to mind (and hopefully have farms
of GPUs to do so).

We will re-visit this list with additional regularization / normalization methods.

François Fleuret Deep learning / 5.6. Architecture choice and training protocol 1 / 9



Regarding the learning rate, for training to succeed it has to

• reduce the loss quickly ⇒ large learning rate,

• not be trapped in a bad minimum ⇒ large learning rate,

• not bounce around in narrow valleys ⇒ small learning rate, and

• not oscillate around a minimum ⇒ small learning rate.

These constraints lead to a general policy of using a larger step size first, and a
smaller one in the end.

The practical strategy is to look at the losses and error rates across epochs and
pick a learning rate and learning rate adaptation. For instance by reducing it at
discrete pre-defined steps, or with a geometric decay.
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CIFAR10 data-set

32× 32 color images, 50, 000 train samples, 10, 000 test samples.

(Krizhevsky, 2009, chap. 3)
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Small convnet on CIFAR10, cross-entropy, batch size 100, η = 1e − 1.
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Using η = 1e − 1 for 25 epochs, then reducing it.
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Using η = 1e − 1 for 25 epochs, then η = 5e − 2.
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While the test error still goes down, the test loss may increase, as it gets even
worse on misclassified examples, and decreases less on the ones getting fixed.
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We can plot the train and test distributions of the per-sample loss

𝓁 = − log

(
exp(fY (X ;w))∑
k exp(fk (X ;w))

)
through epochs to visualize the over-fitting.
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The end
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