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We have motivated the use of a loss with a Bayesian formulation combining the
probability of the data given the model and the probability of the model

logµW (w | 𝒟 = d) = log µ𝒟 (d | W = w) + log µW (w)− logZ .

If µW is a Gaussian density with a covariance matrix proportional to the
identity, the log-prior log µW (w) results in a quadratic penalty

λ∥w∥22 = λ
∑
i

w2
i .

Since this penalty is convex, its sum with a convex functional is convex.

This is called the L2 regularization, or “weight decay” in the artificial neural
network community.

François Fleuret Deep learning / 5.4. L2 and L1 penalties 1 / 11



We have motivated the use of a loss with a Bayesian formulation combining the
probability of the data given the model and the probability of the model

logµW (w | 𝒟 = d) = log µ𝒟 (d | W = w) + log µW (w)− logZ .

If µW is a Gaussian density with a covariance matrix proportional to the
identity, the log-prior log µW (w) results in a quadratic penalty

λ∥w∥22 = λ
∑
i

w2
i .

Since this penalty is convex, its sum with a convex functional is convex.

This is called the L2 regularization, or “weight decay” in the artificial neural
network community.

François Fleuret Deep learning / 5.4. L2 and L1 penalties 1 / 11



We have motivated the use of a loss with a Bayesian formulation combining the
probability of the data given the model and the probability of the model

logµW (w | 𝒟 = d) = log µ𝒟 (d | W = w) + log µW (w)− logZ .

If µW is a Gaussian density with a covariance matrix proportional to the
identity, the log-prior log µW (w) results in a quadratic penalty

λ∥w∥22 = λ
∑
i

w2
i .

Since this penalty is convex, its sum with a convex functional is convex.

This is called the L2 regularization, or “weight decay” in the artificial neural
network community.

François Fleuret Deep learning / 5.4. L2 and L1 penalties 1 / 11



Increasing the λ parameter moves the optimal closer to 0, and away from the
optimal for the loss alone.

Since the derivative of ∥x∥22 is zero at zero, the optimal will never move there if
it was not already there.

(x − 1)2 + 1
6
(x − 1)3
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Increasing the λ parameter moves the optimal closer to 0, and away from the
optimal for the loss alone.

Since the derivative of ∥x∥22 is zero at zero, the optimal will never move there if
it was not already there.

(x − 1)2 + 1
6
(x − 1)3 + 3x2
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Increasing the λ parameter moves the optimal closer to 0, and away from the
optimal for the loss alone.

Since the derivative of ∥x∥22 is zero at zero, the optimal will never move there if
it was not already there.

(x − 1)2 + 1
6
(x − 1)3 + 4x2
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Convnet trained on MNIST with 1, 000 samples and a L2 penalty.

Error
λ Train Test

0.000 0.000 0.064
0.001 0.000 0.063
0.002 0.000 0.064
0.004 0.005 0.065
0.010 0.022 0.075
0.020 0.048 0.101

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

for p in model.parameters():
loss += lambda_l2 * p.pow(2).sum()

optimizer.zero_grad()
loss.backward()
optimizer.step()
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Convnet trained on MNIST with 1, 000 samples and a L2 penalty.

Error
λ Train Test
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Convnet trained on MNIST with 1, 000 samples and a L2 penalty.

Error
λ Train Test

0.000 0.000 0.064
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output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

for p in model.parameters():
loss += lambda_l2 * p.pow(2).sum()
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Convnet trained on MNIST with 1, 000 samples and a L2 penalty.

Error
λ Train Test
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output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

for p in model.parameters():
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We can apply the exact same scheme with a Laplace prior

µ(w) =
1

(2b)D
exp

(
−
∥w∥1
b

)

=
1

(2b)D
exp

(
−

1

b

D∑
d=1

|wd |
)

,

which results in a penalty term of the form

λ∥w∥1 = λ
∑
i

|wi |.

This is the L1 regularization. As for the L2, this penalty is convex, and its sum
with a convex functional is convex.
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An important property of the L1 penalty is that, if ℒ is convex, and

w∗ = argmin
w

ℒ (w) + λ∥w∥1

then

∀d ,
∣∣∣∣ ∂ℒ∂wd

(w∗)

∣∣∣∣ < λ ⇒ w∗
d = 0.
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In practice it means that this penalty pushes some of the variables to zero, but
contrary to the L2 penalty they actually move and remain there.

The λ parameter controls the sparsity of the solution.

+ =

+ =

François Fleuret Deep learning / 5.4. L2 and L1 penalties 6 / 11



With the L1 penalty, the update rule becomes

wt+1 = wt − η (gt + λ sign(wt)) ,

where sign is applied per-component. This is almost identical to

w ′
t = wt − ηgt

wt+1 = w ′
t − ηλ sign(w ′

t ).

This update may overshoot, and result in a component of w ′
t strictly on one

side of 0, while the same component in wt+1 is strictly on the other.

While this is not a problem in principle, since wt will fluctuate around zero, it
can be an issue if the zeroed weights are handled in a specific manner (e.g.
sparse coding to reduce memory footprint or computation).
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The proximal operator prevents parameters from “crossing zero”, by adapting λ
when it is too large

w ′
t = wt − ηgt

wt+1 = w ′
t − ηmin(λ, |w ′

t |)⊙ sign(w ′
t ).

where min is component-wise, and ⊙ is the Hadamard component-wise product.
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Increasing the λ parameter moves the optimal closer to 0, and away from the
optimal for the loss without penalty.

(x − 1)2 + 1
6
(x − 1)3
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Increasing the λ parameter moves the optimal closer to 0, and away from the
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(x − 1)2 + 1
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Increasing the λ parameter moves the optimal closer to 0, and away from the
optimal for the loss without penalty.

(x − 1)2 + 1
6
(x − 1)3 + |x |
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Increasing the λ parameter moves the optimal closer to 0, and away from the
optimal for the loss without penalty.

(x − 1)2 + 1
6
(x − 1)3 + 3

2
|x |
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Increasing the λ parameter moves the optimal closer to 0, and away from the
optimal for the loss without penalty.

(x − 1)2 + 1
6
(x − 1)3 + 2|x |
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Convnet trained on MNIST with 1, 000 samples and a L1 penalty.

Error
λ Train Test

0.00000 0.000 0.064
0.00001 0.000 0.063
0.00002 0.000 0.067
0.00005 0.004 0.068
0.00010 0.087 0.128
0.00020 0.057 0.101
0.00050 0.496 0.516

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
for p in model.parameters():

p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))
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Convnet trained on MNIST with 1, 000 samples and a L1 penalty.

Error
λ Train Test

0.00000 0.000 0.064
0.00001 0.000 0.063
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0.00005 0.004 0.068
0.00010 0.087 0.128
0.00020 0.057 0.101
0.00050 0.496 0.516

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
for p in model.parameters():

p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))
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0.5% of zeroed weights

λ = 0.00001
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Convnet trained on MNIST with 1, 000 samples and a L1 penalty.

Error
λ Train Test

0.00000 0.000 0.064
0.00001 0.000 0.063
0.00002 0.000 0.067
0.00005 0.004 0.068
0.00010 0.087 0.128
0.00020 0.057 0.101
0.00050 0.496 0.516

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
for p in model.parameters():

p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))
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3.0% of zeroed weights

λ = 0.00002
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Convnet trained on MNIST with 1, 000 samples and a L1 penalty.

Error
λ Train Test

0.00000 0.000 0.064
0.00001 0.000 0.063
0.00002 0.000 0.067
0.00005 0.004 0.068
0.00010 0.087 0.128
0.00020 0.057 0.101
0.00050 0.496 0.516

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
for p in model.parameters():

p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))
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10.6% of zeroed weights

λ = 0.00005
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Convnet trained on MNIST with 1, 000 samples and a L1 penalty.

Error
λ Train Test

0.00000 0.000 0.064
0.00001 0.000 0.063
0.00002 0.000 0.067
0.00005 0.004 0.068
0.00010 0.087 0.128
0.00020 0.057 0.101
0.00050 0.496 0.516

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
for p in model.parameters():

p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))
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30.6% of zeroed weights

λ = 0.0001
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Convnet trained on MNIST with 1, 000 samples and a L1 penalty.

Error
λ Train Test

0.00000 0.000 0.064
0.00001 0.000 0.063
0.00002 0.000 0.067
0.00005 0.004 0.068
0.00010 0.087 0.128
0.00020 0.057 0.101
0.00050 0.496 0.516

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
for p in model.parameters():

p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))
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61.9% of zeroed weights

λ = 0.0002
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Convnet trained on MNIST with 1, 000 samples and a L1 penalty.

Error
λ Train Test

0.00000 0.000 0.064
0.00001 0.000 0.063
0.00002 0.000 0.067
0.00005 0.004 0.068
0.00010 0.087 0.128
0.00020 0.057 0.101
0.00050 0.496 0.516

output = model(train_input[b:b+batch_size])
loss = criterion(output, train_target[b:b+batch_size])

optimizer.zero_grad()
loss.backward()
optimizer.step()

with torch.no_grad():
for p in model.parameters():

p.sub_(p.sign() * p.abs().clamp(max = lambda_l1))
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Penalties on the weights may be useful when dealing with small models and
small data-sets and are still standard when data is scarce.

While they have a limited impact for large-scale deep learning, they may still
provide the little push needed to beat baselines.
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The end


