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The usual form of a classification training set is
(xo,yn) €ERP x {1,...,C}, n=1,...,N.

We can train on such a data-set with a regression loss such as the MSE using a
“one-hot vector” encoding: that converts labels into a tensor z € RV*XC with

- 1 if m=y,
vn, znm = { 0 otherwise.
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The usual form of a classification training set is
(xo,yn) €ERP x {1,...,C}, n=1,...,N.

We can train on such a data-set with a regression loss such as the MSE using a
“one-hot vector” encoding: that converts labels into a tensor z € RV*XC with

- 1 if m=y,
vn, znm = { 0 otherwise.

For instance, with N =5 and C = 3, we would have

2 0 1 O
1 One-hot encoding 100
nN|| 1 > | 1 0 0
3 0 0 1
2 0 1 O
>
C
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The usual form of a classification training set is
(xo,yn) €ERP x {1,...,C}, n=1,...,N.

We can train on such a data-set with a regression loss such as the MSE using a
“one-hot vector” encoding: that converts labels into a tensor z € RV*XC with

- 1 if m=y,
vn, znm = { 0 otherwise.

For instance, with N =5 and C = 3, we would have

2 0 1 O
1 One-hot encoding 100
nN|| 1 > | 1 0 0
3 0 0 1
2 0 1 O
>
C

This can be done with F.one_hot.
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However, MSE is justified with a Gaussian noise around a target value that
makes sense geometrically. Beside being conceptually wrong for classification, in
practice it penalizes responses “too strongly on the right side”.
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Francois Fleuret

However, MSE is justified with a Gaussian noise around a target value that
makes sense geometrically. Beside being conceptually wrong for classification, in
practice it penalizes responses “too strongly on the right side”.

Consider this example with correct class 1, and two outputs y and y’.

Both § and § have a MSE of 1, even though the § leads to a perfect
prediction, and the §’ to a perfectly wrong one.
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Francois Fleuret

However, MSE is justified with a Gaussian noise around a target value that
makes sense geometrically. Beside being conceptually wrong for classification, in
practice it penalizes responses “too strongly on the right side”.

Consider this example with correct class 1, and two outputs y and y’.

<>
<

Both § and § have a MSE of 1, even though the § leads to a perfect
prediction, and the §’ to a perfectly wrong one.

The criterion of choice for classification is the cross-entropy, which fixes these
inconsistencies.
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We can generalize the logistic regression to a multi-class setup with fi, ...,

functionals that we interpret as logits

1 f,(x;
P(Y:y|X:x,W:W):Eexpfy(x;w): exp fy (xi )
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We can generalize the logistic regression to a multi-class setup with fi, ...,

functionals that we interpret as logits

exp £, (x; w)

1
PlY=y|X=x,W=w)=—expfy(x;w) = —b 2]
(Y =y IX=xW=w)= Jephlaw) = 0 S

from which

log pw(w | 2 = d)
po(d | W =w) pw(w)
po(d)
= log g (d | W = w) + log puw (w) — log Z

= Z log pgy (Xn, Yn | W = w) + log pw (w) — log Z

n

= log

:ZlogP(Y:y,, | X = xn, W = w) + log py (w) — log Z’
n

exp fy, (x; w) ) y
log | =t ) [ —log Z'.
En og(zkexpfk(x; ) + log uw(w) — log
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Depends on the outputs
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We can generalize the logistic regression to a multi-class setup with fi, ...,
functionals that we interpret as logits
exp fy (x; w)

1
PlY=y|X=x,W=w)=—expfy(x;w) = —b 2]
(Y =y IX=xW=w)= Jephlaw) = 0 S

from which

log pw(w | 2 = d)
po(d | W =w) pw(w)
po(d)
= log g (d | W = w) + log puw (w) — log Z

= Z log pgy (Xn, Yn | W = w) + log pw (w) — log Z

n

:ZlogP(Y:y,, | X = xn, W = w) + log py (w) — log Z’
n

= log

Zlog <M> + log pw(w) —log Z'.
~ Dok exp fi(x; w) —_—

Depends on the outputs

Depends on w
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If we ignore the penalty on w, it makes sense to minimize the average

R NI ACON
g(w)f NZ' g(zkexpfk(XniW)) '

n=1

Po (Y =yn| X=xn)
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If we ignore the penalty on w, it makes sense to minimize the average

R NI ACON
g(w)f NZ' g(zkexpfk(XniW)) V

n=1

Po (Y =yn| X=xn)

Given two distributions p and g, their cross-entropy is defined as

H(p,q) = —Ep[logq] = — > _ p(k)logq(k),
k

with the convention that Olog0 = 0.
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If we ignore the penalty on w, it makes sense to minimize the average

R NI ACON
g(w)f NZ' g(zkexpfk(XnQW)) '

n=1

Po (Y =yn| X=xn)

Given two distributions p and g, their cross-entropy is defined as

H(p,q) = —Ey[logq] = — > _ p(k) log q(k),
k

with the convention that 0log0 = 0. So we can re-write

exp fy, (xn; w) A
Clog [ PRI i W) N e B (Y =y | X =
°g<2kexpfk(xn:w) o8 Y = [ =)

=D 0y, (k) log Pu (Y =k | X = xp)
k

:H(ay",ﬁw(yz <\X:Xn)>.
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If we ignore the penalty on w, it makes sense to minimize the average

R NI ACON
g(w)f NZ' g(zkexpfk(XniW)) '

n=1

Po (Y =yn| X=xn)

Given two distributions p and g, their cross-entropy is defined as

H(p,q) = —Ep[logq] = — > _ p(k)logq(k),
k

with the convention that 0log0 = 0. So we can re-write

— log (%)

—log Pu(Y = yn | X = xp)

=D 0y, (k) log Pu (Y =k | X = xp)
k

:H(ay",ﬁw(yz <\X:Xn)>.

So & above is the average of the cross-entropy between the deterministic “true”
posterior d,, and the estimated P, (Y = - | X = x5).
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This is what torch.nn.CrossEntropyLoss computes.
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This is what torch.nn.CrossEntropyLoss computes.

>>> f = torch.tensor([[-1., -3., 4.1, [-3., 3., -1.11)
>>> target = torch.tensor([0, 11)

>>> criterion = torch.nn.CrossEntropyLoss()

>>> criterion(f, target)

tensor(2.5141)

and indeed

L e n e ) 25141
Nl P 1) ~ 2. .
2 ge*l-i—e*3—‘,-e4 ge*3—‘,—e3—|—e*1
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This is what torch.nn.CrossEntropyLoss computes.

>>> f = torch.tensor([[-1., -3., 4.1, [-3., 3., -1.11)
>>> target = torch.temnsor ([0, 1])

>>> criterion = torch.nn.CrossEntropyLoss()

>>> criterion(f, target)

tensor(2.5141)

and indeed

L <| <L ¢ ) 2.5141
Nl P o ~ 2. .
2\ BT res et e redtel

The range of values is 0 for perfectly classified samples, log(C) if the posterior
is uniform, and up to +oo if the posterior distribution is "“worse” than uniform.
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Let's consider the loss for a single sample in a two-class problem, with a
predictor with two output values.

MSE

2

Incorrect unit activation
o

2
Correct unit activation

P = (x =12+ (y + 1)
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Let's consider the loss for a single sample in a two-class problem, with a
predictor with two output values.

MSE
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Correct unit activation

Incorrect unit activation

P = (x =12+ (y + 1)

MSE incorrectly penalizes outputs which are perfectly valid for prediction
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Let’s consider the loss for a single sample in a two-class problem, with a

predictor with two output values.

MSE

Incorrect unit activation

Correct unit activation

70
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-4 2 4

Cross-entropy

2

Incorrect unit activation

-2

Correct unit activation

— log <ex+ey)

F=(x—1)2+(y+1)? & =

MSE incorrectly penalizes outputs which are perfectly valid for prediction,
contrary to cross-entropy.
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The cross-entropy loss can be seen as the composition of a “log soft-max” to
normalize the [logit] scores into logs of probabilities

exp a1 | exp ac )
. log ———

at,...,ac)+— | log —=——,...,lo
( 1 i C) < gzkexpakv gzkexpak

which can be done with the torch.nn.LogSoftmax module
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The cross-entropy loss can be seen as the composition of a “log soft-max” to
normalize the [logit] scores into logs of probabilities

exp a1 | exp ac )

at,...,ac)+— | log —=——,...,lo
( 1 i C) < gzkexpakv ) gzkexpak

which can be done with the torch.nn.LogSoftmax module, and a read-out of
the normalized score of the correct class

1 N
L(w) = =5 > fn(xai w),

n=1

which is implemented by the torch.nn.NLLLoss criterion.
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The cross-entropy loss can be seen as the composition of a “log soft-max” to
normalize the [logit] scores into logs of probabilities

exp a1 exp ac )

at,...,ac)+— | log —=——,...,lo
( 1 i C) < gzkexpak’ ) EkeXpOék

which can be done with the torch.nn.LogSoftmax module, and a read-out of
the normalized score of the correct class

1 N
L(w) = =5 > fn(xai w),

n=1
which is implemented by the torch.nn.NLLLoss criterion.

>>> f = torch.tensor([[-1., -3., 4.1, [-3., 3., -1.1])
>>> target = torch.temnsor ([0, 1])

>>> model = nn.LogSoftmax(dim = 1)

>>> criterion = torch.nn.NLLLoss()

>>> criterion(model(f), target)

tensor(2.5141)

Hence, if a network should compute log-probabilities, it may have a
torch.nn.LogSoftmax final layer, and be trained with torch.nn.NLLLoss.
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The mapping

(o aC)H( exp a1 exp ac )

Zkexpak""’ Dok exp ak

is called soft-max since it computes a “soft arg-max Boolean label.”
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The mapping

exp a1 exp ac )

(alv---voCC)'_)< e
Dok expag Dok eXp g

is called soft-max since it computes a “soft arg-max Boolean label.”

>>> y = torch.tensor([[-10., -10., 10., -5. ],

. [ 3., 0., 0., 0.1,
. [ 1., 2., 3., 4.1D
>>> f = torch.nn.Softmax(1)

>>> f(y)

tensor([[ 2.0612e-09, 2.0612e-09, 1.0000e+00, 3.0590e-07],
[ 8.7005e-01, 4.3317e-02, 4.3317e-02, 4.3317e-02],
[ 3.2059e-02, 8.7144e-02, 2.3688e-01, 6.4391e-01]11)
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PyTorch provides many other criteria, among which

e torch.nn
e torch.nn
e torch.nn
e torch.nn
e torch.nn

e torch.nn

.MSELoss
.CrossEntropyLoss
.NLLLoss

.LiLoss
.NLLLoss2d

.MultiMarginLoss
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The end



