
Deep learning

4.4. Convolutions

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

If they were handled as normal “unstructured” vectors, large-dimension signals
such as sound samples or images would require models of intractable size.

For instance a linear layer taking a 256× 256 RGB image as input, and
producing an image of same size would require

(256× 256× 3)2 ≃ 3.87e+10

parameters, with the corresponding memory footprint (≃150Gb !), and excess
of capacity.

François Fleuret Deep learning / 4.4. Convolutions 1 / 23

Moreover, this requirement is inconsistent with the intuition that such large
signals have some “invariance in translation”. A transformation meaningful at
a certain location can / should be used everywhere.

A convolution layer embodies this idea. It applies the same linear
transformation locally, everywhere

François Fleuret Deep learning / 4.4. Convolutions 2 / 23

Moreover, this requirement is inconsistent with the intuition that such large
signals have some “invariance in translation”. A transformation meaningful at
a certain location can / should be used everywhere.

A convolution layer embodies this idea. It applies the same linear
transformation locally, everywhere

François Fleuret Deep learning / 4.4. Convolutions 2 / 23

Output

W − w + 1

1 2 0 -1

w

9

1 2 0 -1

w

0

1 2 0 -1

w

1

1 2 0 -1

w

3

1 2 0 -1

w

-5

1 2 0 -1

w

-3

1 2 0 -1

w

6

1 4 -1 0 2 -2 1 3 3 1

Input

W

Kernel

w

1 2 0 -1

François Fleuret Deep learning / 4.4. Convolutions 3 / 23

Output

W − w + 1

1 2 0 -1

w

9

1 2 0 -1

w

0

1 2 0 -1

w

1

1 2 0 -1

w

3

1 2 0 -1

w

-5

1 2 0 -1

w

-3

1 2 0 -1

w

6

1 4 -1 0 2 -2 1 3 3 1

Input

W

Kernel

w

1 2 0 -1

François Fleuret Deep learning / 4.4. Convolutions 3 / 23

Output

W − w + 1

1 2 0 -1

w

9

1 2 0 -1

w

0

1 2 0 -1

w

1

1 2 0 -1

w

3

1 2 0 -1

w

-5

1 2 0 -1

w

-3

1 2 0 -1

w

6

1 4 -1 0 2 -2 1 3 3 1

Input

W

Kernel

w

1 2 0 -1

François Fleuret Deep learning / 4.4. Convolutions 3 / 23

Output

W − w + 1

1 2 0 -1

w

9

1 2 0 -1

w

0

1 2 0 -1

w

1

1 2 0 -1

w

3

1 2 0 -1

w

-5

1 2 0 -1

w

-3

1 2 0 -1

w

6

1 4 -1 0 2 -2 1 3 3 1

Input

W

Kernel

w

1 2 0 -1

François Fleuret Deep learning / 4.4. Convolutions 3 / 23

Output

W − w + 1

1 2 0 -1

w

9

1 2 0 -1

w

0

1 2 0 -1

w

1

1 2 0 -1

w

3

1 2 0 -1

w

-5

1 2 0 -1

w

-3

1 2 0 -1

w

6

1 4 -1 0 2 -2 1 3 3 1

Input

W

Kernel

w

1 2 0 -1

François Fleuret Deep learning / 4.4. Convolutions 3 / 23

Output

W − w + 1

1 2 0 -1

w

9

1 2 0 -1

w

0

1 2 0 -1

w

1

1 2 0 -1

w

3

1 2 0 -1

w

-5

1 2 0 -1

w

-3

1 2 0 -1

w

6

1 4 -1 0 2 -2 1 3 3 1

Input

W

Kernel

w

1 2 0 -1

François Fleuret Deep learning / 4.4. Convolutions 3 / 23

Output

W − w + 1

1 2 0 -1

w

9

1 2 0 -1

w

0

1 2 0 -1

w

1

1 2 0 -1

w

3

1 2 0 -1

w

-5

1 2 0 -1

w

-3

1 2 0 -1

w

6

1 4 -1 0 2 -2 1 3 3 1

Input

W

Kernel

w

1 2 0 -1

François Fleuret Deep learning / 4.4. Convolutions 3 / 23

Output

W − w + 1

1 2 0 -1

w

9

1 2 0 -1

w

0

1 2 0 -1

w

1

1 2 0 -1

w

3

1 2 0 -1

w

-5

1 2 0 -1

w

-3

1 2 0 -1

w

6

1 4 -1 0 2 -2 1 3 3 1

Input

W

Kernel

w

1 2 0 -1

François Fleuret Deep learning / 4.4. Convolutions 3 / 23

Output

W − w + 1

1 2 0 -1

w

9

1 2 0 -1

w

0

1 2 0 -1

w

1

1 2 0 -1

w

3

1 2 0 -1

w

-5

1 2 0 -1

w

-3

1 2 0 -1

w

6

1 4 -1 0 2 -2 1 3 3 1

Input

W

Kernel

w

1 2 0 -1

François Fleuret Deep learning / 4.4. Convolutions 3 / 23

Output

W − w + 1

1 2 0 -1

w

9

1 2 0 -1

w

0

1 2 0 -1

w

1

1 2 0 -1

w

3

1 2 0 -1

w

-5

1 2 0 -1

w

-3

1 2 0 -1

w

6

1 4 -1 0 2 -2 1 3 3 1

Input

W

Kernel

w

1 2 0 -1

François Fleuret Deep learning / 4.4. Convolutions 3 / 23

Formally, in 1d, given
x = (x1, . . . , xW)

and a “convolution kernel” (or “filter”) of width w

u = (u1, . . . , uw)

the convolution x ⊛ u is a vector of size W − w + 1, with

(x ⊛ u)i =
w∑
j=1

xi−1+j uj

= (xi , . . . , xi+w−1) · u

for instance

(1, 2, 3, 4) ⊛ (3, 2) = (3 + 4, 6 + 6, 9 + 8) = (7, 12, 17).

!
This differs from the usual convolution since the kernel and the signal
are both visited in increasing index order.

François Fleuret Deep learning / 4.4. Convolutions 4 / 23

Formally, in 1d, given
x = (x1, . . . , xW)

and a “convolution kernel” (or “filter”) of width w

u = (u1, . . . , uw)

the convolution x ⊛ u is a vector of size W − w + 1, with

(x ⊛ u)i =
w∑
j=1

xi−1+j uj

= (xi , . . . , xi+w−1) · u

for instance

(1, 2, 3, 4) ⊛ (3, 2) = (3 + 4, 6 + 6, 9 + 8) = (7, 12, 17).

!
This differs from the usual convolution since the kernel and the signal
are both visited in increasing index order.

François Fleuret Deep learning / 4.4. Convolutions 4 / 23

Formally, in 1d, given
x = (x1, . . . , xW)

and a “convolution kernel” (or “filter”) of width w

u = (u1, . . . , uw)

the convolution x ⊛ u is a vector of size W − w + 1, with

(x ⊛ u)i =
w∑
j=1

xi−1+j uj

= (xi , . . . , xi+w−1) · u

for instance

(1, 2, 3, 4) ⊛ (3, 2) = (3 + 4, 6 + 6, 9 + 8) = (7, 12, 17).

!
This differs from the usual convolution since the kernel and the signal
are both visited in increasing index order.

François Fleuret Deep learning / 4.4. Convolutions 4 / 23

Convolution can implement in particular differential operators, e.g.

(0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4) ⊛ (−1, 1) = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0).

⊛ =

or crude “template matcher”, e.g.

⊛ =

François Fleuret Deep learning / 4.4. Convolutions 5 / 23

Convolution can implement in particular differential operators, e.g.

(0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4) ⊛ (−1, 1) = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0).

⊛ =

or crude “template matcher”, e.g.

⊛ =

François Fleuret Deep learning / 4.4. Convolutions 5 / 23

Convolution can implement in particular differential operators, e.g.

(0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4) ⊛ (−1, 1) = (0, 0, 0, 1, 1, 1, 1, 0, 0, 0).

⊛ =

or crude “template matcher”, e.g.

⊛ =

François Fleuret Deep learning / 4.4. Convolutions 5 / 23

It generalizes naturally to a multi-dimensional input, although specification can
become complicated.

Its most usual form for “convolutional networks” processes a 3d tensor as input
(i.e. a multi-channel 2d signal) to output a 2d tensor. The kernel is not swiped
across channels, just across rows and columns.

In this case, if the input tensor is of size C × H ×W , and the kernel is
C × h × w , the output is (H − h + 1)× (W − w + 1).

!
We say “2d signal” even though it has C channels, since it is a feature
vector indexed by a 2d location without structure on the feature indexes.

In a standard convolution layer, D such convolutions are combined to generate
a D × (H − h + 1)× (W − w + 1) output.

François Fleuret Deep learning / 4.4. Convolutions 6 / 23

It generalizes naturally to a multi-dimensional input, although specification can
become complicated.

Its most usual form for “convolutional networks” processes a 3d tensor as input
(i.e. a multi-channel 2d signal) to output a 2d tensor. The kernel is not swiped
across channels, just across rows and columns.

In this case, if the input tensor is of size C × H ×W , and the kernel is
C × h × w , the output is (H − h + 1)× (W − w + 1).

!
We say “2d signal” even though it has C channels, since it is a feature
vector indexed by a 2d location without structure on the feature indexes.

In a standard convolution layer, D such convolutions are combined to generate
a D × (H − h + 1)× (W − w + 1) output.

François Fleuret Deep learning / 4.4. Convolutions 6 / 23

It generalizes naturally to a multi-dimensional input, although specification can
become complicated.

Its most usual form for “convolutional networks” processes a 3d tensor as input
(i.e. a multi-channel 2d signal) to output a 2d tensor. The kernel is not swiped
across channels, just across rows and columns.

In this case, if the input tensor is of size C × H ×W , and the kernel is
C × h × w , the output is (H − h + 1)× (W − w + 1).

!
We say “2d signal” even though it has C channels, since it is a feature
vector indexed by a 2d location without structure on the feature indexes.

In a standard convolution layer, D such convolutions are combined to generate
a D × (H − h + 1)× (W − w + 1) output.

François Fleuret Deep learning / 4.4. Convolutions 6 / 23

It generalizes naturally to a multi-dimensional input, although specification can
become complicated.

Its most usual form for “convolutional networks” processes a 3d tensor as input
(i.e. a multi-channel 2d signal) to output a 2d tensor. The kernel is not swiped
across channels, just across rows and columns.

In this case, if the input tensor is of size C × H ×W , and the kernel is
C × h × w , the output is (H − h + 1)× (W − w + 1).

!
We say “2d signal” even though it has C channels, since it is a feature
vector indexed by a 2d location without structure on the feature indexes.

In a standard convolution layer, D such convolutions are combined to generate
a D × (H − h + 1)× (W − w + 1) output.

François Fleuret Deep learning / 4.4. Convolutions 6 / 23

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Input

Output

Kernel

Kernels

D

H − h + 1

W − w + 1

1

D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Input

Output

Kernel

Kernels

D H − h + 1

W − w + 1

1

D

H

W

C

h

w

C

François Fleuret Deep learning / 4.4. Convolutions 7 / 23

Input

Output

Affine
h

w

1

1
H

W

C

H − h + 1

W − w + 1

D

François Fleuret Deep learning / 4.4. Convolutions 8 / 23

A convolution preserves the signal support structure: a 1d signal is converted
into a 1d signal, a 2d signal into a 2d, and neighboring parts of the input signal
influence neighboring parts of the output signal.

And a convolution is equivariant to a translation of the input signal, since its
output is translated similarly.

A 3d convolution can be used if the channel index has some metric meaning,
such as time for a series of grayscale video frames. Otherwise swiping across
channels makes no sense.

François Fleuret Deep learning / 4.4. Convolutions 9 / 23

A convolution preserves the signal support structure: a 1d signal is converted
into a 1d signal, a 2d signal into a 2d, and neighboring parts of the input signal
influence neighboring parts of the output signal.

And a convolution is equivariant to a translation of the input signal, since its
output is translated similarly.

A 3d convolution can be used if the channel index has some metric meaning,
such as time for a series of grayscale video frames. Otherwise swiping across
channels makes no sense.

François Fleuret Deep learning / 4.4. Convolutions 9 / 23

A convolution preserves the signal support structure: a 1d signal is converted
into a 1d signal, a 2d signal into a 2d, and neighboring parts of the input signal
influence neighboring parts of the output signal.

And a convolution is equivariant to a translation of the input signal, since its
output is translated similarly.

A 3d convolution can be used if the channel index has some metric meaning,
such as time for a series of grayscale video frames. Otherwise swiping across
channels makes no sense.

François Fleuret Deep learning / 4.4. Convolutions 9 / 23

We usually refer to one of the channels generated by a convolution layer as an
activation map.

The sub-area of an input map that influences a component of the output as the
receptive field of the latter.

In the context of convolutional networks, a standard linear layer is called a fully
connected layer, or a dense layer, since every input influences every output.

François Fleuret Deep learning / 4.4. Convolutions 10 / 23

We usually refer to one of the channels generated by a convolution layer as an
activation map.

The sub-area of an input map that influences a component of the output as the
receptive field of the latter.

In the context of convolutional networks, a standard linear layer is called a fully
connected layer, or a dense layer, since every input influences every output.

François Fleuret Deep learning / 4.4. Convolutions 10 / 23

The autograd-compliant function

F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

Implements a 2d convolution, where weight is of dimension D × C × h × w
and contains the kernels, bias is of dimension D, input is of dimension

N × C × H ×W

and the result is of dimension

N × D × (H − h + 1)× (W − w + 1).

>>> weight = torch.randn(5, 4, 2, 3)
>>> bias = torch.randn(5)
>>> input = torch.randn(117, 4, 10, 3)
>>> output = F.conv2d(input, weight, bias)
>>> output.size()
torch.Size([117, 5, 9, 1])

Similar functions implement 1d and 3d convolutions.

François Fleuret Deep learning / 4.4. Convolutions 11 / 23

The autograd-compliant function

F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

Implements a 2d convolution, where weight is of dimension D × C × h × w
and contains the kernels, bias is of dimension D, input is of dimension

N × C × H ×W

and the result is of dimension

N × D × (H − h + 1)× (W − w + 1).

>>> weight = torch.randn(5, 4, 2, 3)
>>> bias = torch.randn(5)
>>> input = torch.randn(117, 4, 10, 3)
>>> output = F.conv2d(input, weight, bias)
>>> output.size()
torch.Size([117, 5, 9, 1])

Similar functions implement 1d and 3d convolutions.

François Fleuret Deep learning / 4.4. Convolutions 11 / 23

The autograd-compliant function

F.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

Implements a 2d convolution, where weight is of dimension D × C × h × w
and contains the kernels, bias is of dimension D, input is of dimension

N × C × H ×W

and the result is of dimension

N × D × (H − h + 1)× (W − w + 1).

>>> weight = torch.randn(5, 4, 2, 3)
>>> bias = torch.randn(5)
>>> input = torch.randn(117, 4, 10, 3)
>>> output = F.conv2d(input, weight, bias)
>>> output.size()
torch.Size([117, 5, 9, 1])

Similar functions implement 1d and 3d convolutions.

François Fleuret Deep learning / 4.4. Convolutions 11 / 23

x = mnist_train.data[12].float().view(1, 1, 28, 28)

weight = torch.empty(5, 1, 3, 3)

weight[0, 0] = torch.tensor([[0., 0., 0.],
[0., 1., 0.],
[0., 0., 0.]])

weight[1, 0] = torch.tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])

weight[2, 0] = torch.tensor([[-1., 0., 1.],
[-1., 0., 1.],
[-1., 0., 1.]])

weight[3, 0] = torch.tensor([[-1., -1., -1.],
[0., 0., 0.],
[1., 1., 1.]])

weight[4, 0] = torch.tensor([[0., -1., 0.],
[-1., 4., -1.],
[0., -1., 0.]])

y = F.conv2d(x, weight)

François Fleuret Deep learning / 4.4. Convolutions 12 / 23

⊛

=

⊛

=

⊛

=

⊛

=

⊛

=

François Fleuret Deep learning / 4.4. Convolutions 13 / 23

⊛

=

⊛

=

⊛

=

⊛

=

⊛

=

François Fleuret Deep learning / 4.4. Convolutions 13 / 23

⊛

=

⊛

=

⊛

=

⊛

=

⊛

=

François Fleuret Deep learning / 4.4. Convolutions 13 / 23

⊛

=

⊛

=

⊛

=

⊛

=

⊛

=

François Fleuret Deep learning / 4.4. Convolutions 13 / 23

⊛

=

⊛

=

⊛

=

⊛

=

⊛

=

François Fleuret Deep learning / 4.4. Convolutions 13 / 23

class torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1,
groups=1, bias=True)

Wraps the convolution into a Module, with the kernels and biases as Parameter
properly randomized at creation.

The kernel size is either a pair (h,w) or a single value k interpreted as (k, k).

>>> f = nn.Conv2d(in_channels = 4, out_channels = 5, kernel_size = (2, 3))
>>> for n, p in f.named_parameters(): print(n, p.size())
...
weight torch.Size([5, 4, 2, 3])
bias torch.Size([5])
>>> x = torch.randn(117, 4, 10, 3)
>>> y = f(x)
>>> y.size()
torch.Size([117, 5, 9, 1])

François Fleuret Deep learning / 4.4. Convolutions 14 / 23

class torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1,
groups=1, bias=True)

Wraps the convolution into a Module, with the kernels and biases as Parameter
properly randomized at creation.

The kernel size is either a pair (h,w) or a single value k interpreted as (k, k).

>>> f = nn.Conv2d(in_channels = 4, out_channels = 5, kernel_size = (2, 3))
>>> for n, p in f.named_parameters(): print(n, p.size())
...
weight torch.Size([5, 4, 2, 3])
bias torch.Size([5])
>>> x = torch.randn(117, 4, 10, 3)
>>> y = f(x)
>>> y.size()
torch.Size([117, 5, 9, 1])

François Fleuret Deep learning / 4.4. Convolutions 14 / 23

Padding, stride, and dilation

François Fleuret Deep learning / 4.4. Convolutions 15 / 23

Convolutions have three additional parameters:

• The padding specifies the size of a zeroed frame added around the input,

• the stride specifies a step size when moving the kernel across the signal,

• the dilation modulates the expansion of the filter without adding weights.

François Fleuret Deep learning / 4.4. Convolutions 16 / 23

Here with C × 3× 5 as input

, a padding of (2, 1), a stride of (2, 2), and a
kernel of size C × 3× 3, the output is 1× 3× 3.

2

1

2

2

Input

Input

Output

François Fleuret Deep learning / 4.4. Convolutions 17 / 23

Here with C × 3× 5 as input, a padding of (2, 1)

, a stride of (2, 2), and a
kernel of size C × 3× 3, the output is 1× 3× 3.

2

1

2

2

Input

Input

Output

François Fleuret Deep learning / 4.4. Convolutions 17 / 23

Here with C × 3× 5 as input, a padding of (2, 1), a stride of (2, 2)

, and a
kernel of size C × 3× 3, the output is 1× 3× 3.

2

1

2

2

Input

Input

Output

François Fleuret Deep learning / 4.4. Convolutions 17 / 23

Here with C × 3× 5 as input, a padding of (2, 1), a stride of (2, 2), and a
kernel of size C × 3× 3

, the output is 1× 3× 3.

2

1

2

2

Input

Input

Output

François Fleuret Deep learning / 4.4. Convolutions 17 / 23

Here with C × 3× 5 as input, a padding of (2, 1), a stride of (2, 2), and a
kernel of size C × 3× 3

, the output is 1× 3× 3.

2

1

2

2

Input

Input

Output

François Fleuret Deep learning / 4.4. Convolutions 17 / 23

Here with C × 3× 5 as input, a padding of (2, 1), a stride of (2, 2), and a
kernel of size C × 3× 3

, the output is 1× 3× 3.

2

1

2

2

Input

Input

Output

François Fleuret Deep learning / 4.4. Convolutions 17 / 23

Here with C × 3× 5 as input, a padding of (2, 1), a stride of (2, 2), and a
kernel of size C × 3× 3

, the output is 1× 3× 3.

2

1

2

2

Input

Input

Output

François Fleuret Deep learning / 4.4. Convolutions 17 / 23

Here with C × 3× 5 as input, a padding of (2, 1), a stride of (2, 2), and a
kernel of size C × 3× 3

, the output is 1× 3× 3.

2

1

2

2

Input

Input

Output

François Fleuret Deep learning / 4.4. Convolutions 17 / 23

Here with C × 3× 5 as input, a padding of (2, 1), a stride of (2, 2), and a
kernel of size C × 3× 3

, the output is 1× 3× 3.

2

1

2

2

Input

Input

Output

François Fleuret Deep learning / 4.4. Convolutions 17 / 23

Here with C × 3× 5 as input, a padding of (2, 1), a stride of (2, 2), and a
kernel of size C × 3× 3

, the output is 1× 3× 3.

2

1

2

2

Input

Input

Output

François Fleuret Deep learning / 4.4. Convolutions 17 / 23

Here with C × 3× 5 as input, a padding of (2, 1), a stride of (2, 2), and a
kernel of size C × 3× 3

, the output is 1× 3× 3.

2

1

2

2

Input

Input

Output

François Fleuret Deep learning / 4.4. Convolutions 17 / 23

Here with C × 3× 5 as input, a padding of (2, 1), a stride of (2, 2), and a
kernel of size C × 3× 3, the output is 1× 3× 3.

2

1

2

2

Input

Input

Output

François Fleuret Deep learning / 4.4. Convolutions 17 / 23

!
A convolution with a stride greater than 1 may not cover the input map
entirely, hence may ignore some of the input values.

François Fleuret Deep learning / 4.4. Convolutions 18 / 23

The dilation modulates the expansion of the filter support by adding rows and
columns of zeros between coefficients (Yu and Koltun, 2015).

It is 1 for standard convolutions, but can be greater, in which case the resulting
operation can be envisioned as a convolution with a regularly sparsified filter.

This notion comes from signal processing, where it is referred to as algorithme à
trous, hence the term sometime used of “convolution à trous”.

François Fleuret Deep learning / 4.4. Convolutions 19 / 23

The dilation modulates the expansion of the filter support by adding rows and
columns of zeros between coefficients (Yu and Koltun, 2015).

It is 1 for standard convolutions, but can be greater, in which case the resulting
operation can be envisioned as a convolution with a regularly sparsified filter.

This notion comes from signal processing, where it is referred to as algorithme à
trous, hence the term sometime used of “convolution à trous”.

François Fleuret Deep learning / 4.4. Convolutions 19 / 23

Input

Output

Dilation = 1

François Fleuret Deep learning / 4.4. Convolutions 20 / 23

Input

Output

Dilation = 1

François Fleuret Deep learning / 4.4. Convolutions 20 / 23

Input

Output

Dilation = 1

François Fleuret Deep learning / 4.4. Convolutions 20 / 23

Input

Output

Dilation = 1

François Fleuret Deep learning / 4.4. Convolutions 20 / 23

Input

Output

Dilation = 1

François Fleuret Deep learning / 4.4. Convolutions 20 / 23

Input

Output

Dilation = 1

François Fleuret Deep learning / 4.4. Convolutions 20 / 23

Input

Output

Dilation = 1

François Fleuret Deep learning / 4.4. Convolutions 20 / 23

Input

Output

Dilation = 1

François Fleuret Deep learning / 4.4. Convolutions 20 / 23

Input

Output

Dilation = 2

François Fleuret Deep learning / 4.4. Convolutions 21 / 23

Input

Output

Dilation = 2

François Fleuret Deep learning / 4.4. Convolutions 21 / 23

Input

Output

Dilation = 2

François Fleuret Deep learning / 4.4. Convolutions 21 / 23

Input

Output

Dilation = 2

François Fleuret Deep learning / 4.4. Convolutions 21 / 23

Input

Output

Dilation = 2

François Fleuret Deep learning / 4.4. Convolutions 21 / 23

Input

Output

Dilation = 2

François Fleuret Deep learning / 4.4. Convolutions 21 / 23

Input

Output

Dilation = 2

François Fleuret Deep learning / 4.4. Convolutions 21 / 23

Input

Output

Dilation = 2

François Fleuret Deep learning / 4.4. Convolutions 21 / 23

Input

Output

Dilation = 2

François Fleuret Deep learning / 4.4. Convolutions 21 / 23

A 1d convolution with a kernel of size k and dilation d can be interpreted as a
convolution with a filter of size 1 + (k − 1)d with only k non-zero coefficients.

For example with k = 3 and d = 4, the difference between the input map size
and the output map size is 1 + (3− 1)4− 1 = 8.

>>> x = torch.randn(1, 1, 20, 30)
>>> l = nn.Conv2d(1, 1, kernel_size = 3, dilation = 4)
>>> l(x).size()
torch.Size([1, 1, 12, 22])

François Fleuret Deep learning / 4.4. Convolutions 22 / 23

Having a dilation greater than one increases the units’ receptive field size
without increasing the number of parameters.

Convolutions with stride or dilation strictly greater than one reduce the
activation map size, for instance to make a final classification decision.

François Fleuret Deep learning / 4.4. Convolutions 23 / 23

The End

References

F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. CoRR,
abs/1511.07122v3, 2015.

	Padding, stride, and dilation
	References

