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We want to train an MLP by minimizing a loss over the training set

Z(w, b) = Z ¢(f(xn; w, b), yn).
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We want to train an MLP by minimizing a loss over the training set

Z(w, b) = Z ¢(f(xn; w, b), yn).

To use gradient descent, we need the expression of the gradient of the
per-sample loss
tn = E(f(xn; w, b), yn)

with respect to the parameters, e.g.
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For clarity, we consider a single training sample x, and introduce s(), ... s(t)

as the summations before activation functions.
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s 2y 22 oD 2 5B = f(x;w, b).
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For clarity, we consider a single training sample x, and introduce s, ... s(

as the summations before activation functions.
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Formally we set x(0) = X,

s() = wx(=1) & p()
Vi=1,...,L,
X = g (s,

and we set the output of the network as f(x; w, b) = x(1).
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For clarity, we consider a single training sample x, and introduce s(), ... s(t)

as the summations before activation functions.
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Formally we set x(0) = X,

s() = wx(=1) & p()
Vi=1,...,L,
x) = (s |

and we set the output of the network as f(x; w, b) = x(1).

This is the forward pass.
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The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(gof) = (g of)f.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.
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Francois Fleuret

The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(gof) = (g of)f.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

This generalizes to longer compositions and higher dimensions

Iyoty_1o--of (X) = Jry (v—1(- - (x))) - - - I (R(A(x))) I (f1(x)) I (%)

where J¢(x) is the Jacobian of f at x, that is the matrix of the linear
approximation of f in the neighborhood of x.
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Derivatives w.r.t the activations
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Derivatives w.r.t the activations
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Derivatives w.r.t the activations
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Derivatives w.r.t the activations
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Derivatives w.r.t the activations
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(N _ (1, (1-1) O]
s = w; 7 X; + b7,
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Derivatives w.r.t the activations
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Derivatives w.r.t the activations
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Derivatives w.r.t the activations
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Derivatives w.r.t the weights an biases
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Derivatives w.r.t the weights an biases
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Derivatives w.r.t the weights an biases
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Derivatives w.r.t the weights an biases
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0(‘1) from the definition of #, and recursively

X

To summarize: we can compute 5
propagate backward the derivatives of the loss w.r.t the activations with
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0(‘1) from the definition of #, and recursively
X

To summarize: we can compute 5
propagate backward the derivatives of the loss w.r.t the activations with
ot or |
= ()
s; X;
and

ot or 0)
- = —w.
8xf”1) Z PRONE

And then compute the derivatives w.r.t the parameters with
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This is the backward pass.
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To write in tensorial form we will use the following notation for the gradient of
aloss 7 : RV = R,

or
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and if ¥ : RVXM 5 R we will use the notation
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Forward pass

Compute the activations.
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Forward pass

Compute the activations.

Backward pass

Compute the derivatives of the loss w.r.t. the activations.

[%] from the definition of # { ¢ }

— o 1 (1)
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Compute the derivatives of the loss w.r.t. the parameters.
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Forward pass
Compute the activations.
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Backward pass

Compute the derivatives of the loss w.r.t. the activations.

[%] from the definition of # { ¢ }
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Compute the derivatives of the loss w.r.t. the parameters.
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Gradient step

Update the parameters.
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In spite of its hairy formalization, the backward pass is a simple algorithm:
apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy
computation is concentrated in linear operations, and all the non-linearities go

into component-wise operations.
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In spite of its hairy formalization, the backward pass is a simple algorithm:
apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy
computation is concentrated in linear operations, and all the non-linearities go
into component-wise operations.

Without tricks, we have to keep in memory all the activations computed
during the forward pass.
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Regarding computation, since the costly operation for the forward pass is

s — (=1 4 )

and for the backward
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ot or T
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the rule of thumb is that the backward pass is twice more expensive than the
forward one.

and
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The end



