Deep learning

3.6. Back-propagation

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE

https://fleuret.org/dlc/

We want to train an MLP by minimizing a loss over the training set

Z(w, b) = Z ¢(f(xn; w, b), yn).

Francois Fleuret Deep learning / 3.6. Back-propagation 1/11

We want to train an MLP by minimizing a loss over the training set

Z(w, b) = Z ¢(f(xn; w, b), yn).

To use gradient descent, we need the expression of the gradient of the
per-sample loss
tn = E(f(xn; w, b), yn)

with respect to the parameters, e.g.

0ty 0ty
a .

nd
! !
ow!) an)
1
Francois Fleuret Deep learning / 3.6. Back-propagation

1/11

For clarity, we consider a single training sample x, and introduce s(), ... s(t)

as the summations before activation functions.

W) p(1)

] @) p(2)
£ =, WO) o 1) wEHE,

s 2y 22 oD 2 5B = f(x;w, b).

Francois Fleuret Deep learning / 3.6. Back-propagation 2/11

For clarity, we consider a single training sample x, and introduce s, ... s(

as the summations before activation functions.

W) p(1)

} Q) o,) w@p?
=x ——— s L) — o~

0)

N s 2 WP D) 2 D) = f(x; w, b).

Formally we set x(0) = X,

s() = wx(=1) & p()
Vi=1,...,L,
X = g (s,

and we set the output of the network as f(x; w, b) = x(1).

Francois Fleuret Deep learning / 3.6. Back-propagation 2/11

For clarity, we consider a single training sample x, and introduce s(), ... s(t)

as the summations before activation functions.

W) p(1)

) (L) p(L)
=x 2220 0 2, 0 Y

(2) p(2)
Wb, 2P s 2y (D) = £(x; w, b).

0) 2) 9,

x(s

Formally we set x(0) = X,

s() = wx(=1) & p()
Vi=1,...,L,
x) = (s |

and we set the output of the network as f(x; w, b) = x(1).

This is the forward pass.

Francois Fleuret Deep learning / 3.6. Back-propagation 2/11

The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(gof) = (g of)f.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

Francois Fleuret Deep learning / 3.6. Back-propagation 3/11

Francois Fleuret

The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(gof) = (g of)f.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

This generalizes to longer compositions and higher dimensions

Iyoty_1o--of (X) = Jry (v—1(- - (x))) - - - I (R(A(x))) I (f1(x)) I (%)

where J¢(x) is the Jacobian of f at x, that is the matrix of the linear
approximation of f in the neighborhood of x.

Deep learning / 3.6. Back-propagation

3/11

Derivatives w.r.t the activations

1_1y wil, bl

) -
N RORANN)

Francois Fleuret Deep learning / 3.6. Back-propagation 4/11

Derivatives w.r.t the activations

1_1) w0

) -
x W o X0

0]

i

influences ¢ only through x with

Since s ¢

Francois Fleuret Deep learning / 3.6. Back-propagation 4/11

Derivatives w.r.t the activations

1_1) w0

) -
x W o X0

0]

i

influences ¢ only through x with

Since s ¢

we have
or or ox

as? ax(D as?

i i

Francois Fleuret Deep learning / 3.6. Back-propagation 4/11

Derivatives w.r.t the activations

! I
N AL BN

0]

i

influences ¢ only through x with

Since s ¢

we have

85.(1) B ax.(l) 85.(/) B ax.(l

i i

or o o ar .
7o' (s”):

Francois Fleuret Deep learning / 3.6. Back-propagation

4/11

Derivatives w.r.t the activations

! I
N AL BN

(N (!

Since s; "’ influences # only through x;’ with
A = o),
we have 0
oc o 0x; _or o (s.(l)>
as) ax ash ax! e
And since Xj(/_l) influences # only through the s,.(/) with
(N _ (1, (1-1) O]
s = w; 7 X; + b7,

Francois Fleuret Deep learning / 3.6. Back-propagation

4/11

Derivatives w.r.t the activations

! I
N AL BN

(N (!

Since s; "’ influences # only through x;’ with
A = (s,
we have
or or o o /(+9)
as!) a ax\ s a ax\) ANV
And since Xj(/_l) influences # only through the s,.(/) with
(N _ (1, (1-1) O]
s = w; 7 X; + b7,
j
we have
or > or os
8)(}/71) i 8slg/) 8Xj(/71)

Francois Fleuret Deep learning / 3.6. Back-propagation 4/11

Derivatives w.r.t the activations

! I
N AL BN

(N (!

Since s; "’ influences # only through x;’ with
A = (s,
we have
or or o o /(+9)
as!) a ax\ s a ax\) ANV
And since Xj(/_l) influences ¢ only through the s,.(/) with
n _ (1, (1-1) O]
s = w; 7 X; + b7,
j
we have
a¢ > or s N0

— S B —_—w; .
8XJ§I71) — 95 8Xj(/71) I_ 655/) ij

i

Francois Fleuret Deep learning / 3.6. Back-propagation 4/11

Derivatives w.r.t the activations

! I
N AL BN

(N (!

Since s; "’ influences # only through x;’ with
A = (s,
we have
or or o o /(+9)
as!) a ax\ s a ax\) ANV
And since Xj(/_l) influences ¢ only through the s,.(/) with
n _ (1, (1-1) O]
s = w; 7 X; + b7,
j
we have
a¢ > or s N0

— S B —_—w; .
8XJ§I71) — 95 8Xj(/71) I_ 655/) ij

i

Francois Fleuret Deep learning / 3.6. Back-propagation 4/11

Derivatives w.r.t the weights an biases

i1y w60

N RO

Since W(Ij) and b influences # only through 5" with

i, i i

0 = 3wl 4)
J

Francois Fleuret Deep learning / 3.6. Back-propagation

5/11

Derivatives w.r.t the weights an biases

! l
N AT LN WS ()

O]

.) (0 . .
Since w; and b;"’ influences # only through s;”” with
I N _(I-1 I
I S)
J
we have

or _ or 0s
o as! o)

1) ! 1

Francois Fleuret Deep learning / 3.6. Back-propagation 5/11

Derivatives w.r.t the weights an biases

! l
N AT LN WS ()

Since W(Ij) and b influences # only through 5" with

i, i i
1 _ (1, (I=1) (N
sV =D wix by
J
we have

or ac 9" ot
o 950 awl 950 I

1) ! 1

Francois Fleuret Deep learning / 3.6. Back-propagation 5/11

Derivatives w.r.t the weights an biases

! l
N AT LN WS ()

; O] () -) i
Since w; and b;"’ influences # only through s;”” with
(_ (1, (1-1) (0
sV =D wix by
J
we have

or or o) o iy
= = —Xx s
ow) asV ow!) as
or of

o gs!”

Francois Fleuret Deep learning / 3.6. Back-propagation 5/11

0(‘1) from the definition of #, and recursively

X

To summarize: we can compute 5
propagate backward the derivatives of the loss w.r.t the activations with
ot or |
20~ o7 ()
S; ox;

and or o¢
_ ()
PG =" Wi

XJ- i dSI-

Francois Fleuret Deep learning / 3.6. Back-propagation 6 /11

0(‘1) from the definition of #, and recursively
X

To summarize: we can compute 5
propagate backward the derivatives of the loss w.r.t the activations with
ot or |
= ()
s; X;
and

ot or 0)
- = —w.
8xf”1) Z PRONE

And then compute the derivatives w.r.t the parameters with
or o (1-1)
= ——x

ow B as J 7
ij i

and
ot or

FYEORPNON

This is the backward pass.

Deep learning / 3.6. Back-propagation

6/11

To write in tensorial form we will use the following notation for the gradient of
aloss 7 : RV = R,

or
. Ox1
or ’
Ox : ’
ot
Ixy

and if ¥ : RVXM 5 R we will use the notation

[exl] I
é)le o owy m
oY
ow : : :
oY oY
BWN‘l T aWN‘M

Francois Fleuret Deep learning / 3.6. Back-propagation 7/11

Francois Fleuret

X

I—-1)

Deep learning / 3.6. Back-propagation

8 /11

Francois Fleuret

L1

Deep learning / 3.6. Back-propagation

8 /11

Francois Fleuret

L1

Deep learning / 3.6. Back-propagation

ar

Bxilj

8 /11

(I=1) |t X +
- L L]

ash ax

i i

o _ o, (S(/))

Francois Fleuret Deep learning / 3.6. Back-propagation 8 /11

Francois Fleuret

L1

[

.

ax(I—1)

]

Deep learning / 3.6. Back-propagation

8 /11

x(1=1) X D

tol4]
[5:05] Tx '

Francois Fleuret Deep learning / 3.6. Back-propagation 8 /11

X=1) |k

X

[¢] T .
ax(I=1) ' '

Francois Fleuret Deep learning / 3.6. Back-propagation 8 /11

X=1) |k

I—\
EEIAN-

X

[ar] T
ax(I=1) '

Francois Fleuret Deep learning / 3.6. Back-propagation 8 /11

Forward pass

Compute the activations.

Francois Fleuret Deep learning / 3.6. Back-propagation 9/11

Forward pass

Compute the activations.

Backward pass

Compute the derivatives of the loss w.r.t. the activations.

[%] from the definition of # { ¢ }

— o 1 (1)
a5 | = {é?x(’)} o ()

1<t] =)" [t

Compute the derivatives of the loss w.r.t. the parameters.

or o¢ N T {BK}:[(‘%]
|:|:8W(I):|:| - {95(’)} (X()) ob() as()

Francois Fleuret Deep learning / 3.6. Back-propagation 9/11

Forward pass
Compute the activations.

0)

xO =x vi=1,...

Backward pass

Compute the derivatives of the loss w.r.t. the activations.

[%] from the definition of # { ¢ }

— o 1 (1)
a5 | = {é?x(’)} o ()

1<t] =)" [t

Compute the derivatives of the loss w.r.t. the parameters.
el I L N i R P
ow) || — [as() ab os()
Gradient step

Update the parameters.

ot or
() n _ () (n _
w'\' «— w n |:|:0W(I):|:| b\« b n{ab(’)}

Francois Fleuret Deep learning / 3.6. Back-propagation 9/11

In spite of its hairy formalization, the backward pass is a simple algorithm:
apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy
computation is concentrated in linear operations, and all the non-linearities go

into component-wise operations.

Francois Fleuret Deep learning / 3.6. Back-propagation 10 / 11

In spite of its hairy formalization, the backward pass is a simple algorithm:
apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy
computation is concentrated in linear operations, and all the non-linearities go
into component-wise operations.

Without tricks, we have to keep in memory all the activations computed
during the forward pass.

Francois Fleuret Deep learning / 3.6. Back-propagation 10 / 11

Regarding computation, since the costly operation for the forward pass is

s — (=1 4)

and for the backward

ot T[o
_ (1+1)
{ax(o} - (W) [55(/“)}

ot or T
_ (I1-1)
[{aw(/)]] - {asm} (X) :

the rule of thumb is that the backward pass is twice more expensive than the
forward one.

and

Francois Fleuret Deep learning / 3.6. Back-propagation 11 /11

The end

