
Deep learning

3.6. Back-propagation

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/


We want to train an MLP by minimizing a loss over the training set

ℒ (w , b) =
∑
n

𝓁(f (xn;w , b), yn).

To use gradient descent, we need the expression of the gradient of the
per-sample loss

𝓁n = 𝓁(f (xn;w , b), yn)

with respect to the parameters, e.g.

∂𝓁n

∂w
(l)
i,j

and
∂𝓁n

∂b
(l)
i

.

François Fleuret Deep learning / 3.6. Back-propagation 1 / 11



We want to train an MLP by minimizing a loss over the training set

ℒ (w , b) =
∑
n

𝓁(f (xn;w , b), yn).

To use gradient descent, we need the expression of the gradient of the
per-sample loss

𝓁n = 𝓁(f (xn;w , b), yn)

with respect to the parameters, e.g.

∂𝓁n

∂w
(l)
i,j

and
∂𝓁n

∂b
(l)
i

.

François Fleuret Deep learning / 3.6. Back-propagation 1 / 11



For clarity, we consider a single training sample x , and introduce s(1), . . . , s(L)

as the summations before activation functions.

x(0) = x
w (1),b(1)−−−−−→ s(1)

σ−→ x(1)
w (2),b(2)−−−−−→ s(2)

σ−→ . . .
w (L),b(L)−−−−−→ s(L)

σ−→ x(L) = f (x ;w , b).

Formally we set x(0) = x ,

∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)

)
,

and we set the output of the network as f (x ;w , b) = x(L).

This is the forward pass.

François Fleuret Deep learning / 3.6. Back-propagation 2 / 11



For clarity, we consider a single training sample x , and introduce s(1), . . . , s(L)

as the summations before activation functions.

x(0) = x
w (1),b(1)−−−−−→ s(1)

σ−→ x(1)
w (2),b(2)−−−−−→ s(2)

σ−→ . . .
w (L),b(L)−−−−−→ s(L)

σ−→ x(L) = f (x ;w , b).

Formally we set x(0) = x ,

∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)

)
,

and we set the output of the network as f (x ;w , b) = x(L).

This is the forward pass.

François Fleuret Deep learning / 3.6. Back-propagation 2 / 11



For clarity, we consider a single training sample x , and introduce s(1), . . . , s(L)

as the summations before activation functions.

x(0) = x
w (1),b(1)−−−−−→ s(1)

σ−→ x(1)
w (2),b(2)−−−−−→ s(2)

σ−→ . . .
w (L),b(L)−−−−−→ s(L)

σ−→ x(L) = f (x ;w , b).

Formally we set x(0) = x ,

∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)

)
,

and we set the output of the network as f (x ;w , b) = x(L).

This is the forward pass.

François Fleuret Deep learning / 3.6. Back-propagation 2 / 11



The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(g ◦ f )′ = (g ′ ◦ f )f ′.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

This generalizes to longer compositions and higher dimensions

JfN◦fN−1◦···◦f1 (x) = JFN (fN−1(. . . (x))) . . . Jf3 (f2(f1(x))) Jf2 (f1(x)) Jf1 (x)

where Jf (x) is the Jacobian of f at x , that is the matrix of the linear
approximation of f in the neighborhood of x .

François Fleuret Deep learning / 3.6. Back-propagation 3 / 11



The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(g ◦ f )′ = (g ′ ◦ f )f ′.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

This generalizes to longer compositions and higher dimensions

JfN◦fN−1◦···◦f1 (x) = JFN (fN−1(. . . (x))) . . . Jf3 (f2(f1(x))) Jf2 (f1(x)) Jf1 (x)

where Jf (x) is the Jacobian of f at x , that is the matrix of the linear
approximation of f in the neighborhood of x .

François Fleuret Deep learning / 3.6. Back-propagation 3 / 11



Derivatives w.r.t the activations

x(l−1) w (l), b(l)−−−−−→ s(l)
σ−−−→ x(l)

Since s
(l)
i influences 𝓁 only through x

(l)
i with

x
(l)
i = σ(s

(l)
i ),

we have

∂𝓁

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

σ′
(
s
(l)
i

)
,

And since x
(l−1)
j influences 𝓁 only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

w
(l)
i,j .

François Fleuret Deep learning / 3.6. Back-propagation 4 / 11



Derivatives w.r.t the activations

x(l−1) w (l), b(l)−−−−−→ s(l)
σ−−−→ x(l)

::::::::::

Since s
(l)
i influences 𝓁 only through x

(l)
i with

x
(l)
i = σ(s

(l)
i ),

we have

∂𝓁

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

σ′
(
s
(l)
i

)
,

And since x
(l−1)
j influences 𝓁 only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

w
(l)
i,j .

François Fleuret Deep learning / 3.6. Back-propagation 4 / 11



Derivatives w.r.t the activations

x(l−1) w (l), b(l)−−−−−→ s(l)
σ−−−→ x(l)

::::::::::

Since s
(l)
i influences 𝓁 only through x

(l)
i with

x
(l)
i = σ(s

(l)
i ),

we have

∂𝓁

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

σ′
(
s
(l)
i

)
,

And since x
(l−1)
j influences 𝓁 only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

w
(l)
i,j .

François Fleuret Deep learning / 3.6. Back-propagation 4 / 11



Derivatives w.r.t the activations

x(l−1) w (l), b(l)−−−−−→ s(l)
σ−−−→ x(l)

::::::::::

Since s
(l)
i influences 𝓁 only through x

(l)
i with

x
(l)
i = σ(s

(l)
i ),

we have

∂𝓁

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

σ′
(
s
(l)
i

)
,

And since x
(l−1)
j influences 𝓁 only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

w
(l)
i,j .

François Fleuret Deep learning / 3.6. Back-propagation 4 / 11



Derivatives w.r.t the activations

x(l−1) w (l), b(l)−−−−−→ s(l)
:::::::::::::

σ−−−→ x(l)

Since s
(l)
i influences 𝓁 only through x

(l)
i with

x
(l)
i = σ(s

(l)
i ),

we have

∂𝓁

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

σ′
(
s
(l)
i

)
,

And since x
(l−1)
j influences 𝓁 only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

w
(l)
i,j .

François Fleuret Deep learning / 3.6. Back-propagation 4 / 11



Derivatives w.r.t the activations

x(l−1) w (l), b(l)−−−−−→ s(l)
:::::::::::::

σ−−−→ x(l)

Since s
(l)
i influences 𝓁 only through x

(l)
i with

x
(l)
i = σ(s

(l)
i ),

we have

∂𝓁

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

σ′
(
s
(l)
i

)
,

And since x
(l−1)
j influences 𝓁 only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

w
(l)
i,j .

François Fleuret Deep learning / 3.6. Back-propagation 4 / 11



Derivatives w.r.t the activations

x(l−1) w (l), b(l)−−−−−→ s(l)
:::::::::::::

σ−−−→ x(l)

Since s
(l)
i influences 𝓁 only through x

(l)
i with

x
(l)
i = σ(s

(l)
i ),

we have

∂𝓁

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

σ′
(
s
(l)
i

)
,

And since x
(l−1)
j influences 𝓁 only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

w
(l)
i,j .

François Fleuret Deep learning / 3.6. Back-propagation 4 / 11



Derivatives w.r.t the activations

x(l−1) w (l), b(l)−−−−−→ s(l)
σ−−−→ x(l)

Since s
(l)
i influences 𝓁 only through x

(l)
i with

x
(l)
i = σ(s

(l)
i ),

we have

∂𝓁

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

σ′
(
s
(l)
i

)
,

And since x
(l−1)
j influences 𝓁 only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

w
(l)
i,j .

François Fleuret Deep learning / 3.6. Back-propagation 4 / 11



Derivatives w.r.t the weights an biases

x(l−1) w (l), b(l)−−−−−→ s(l)
:::::::::::::

σ−−−→ x(l)

Since w
(l)
i,j and b

(l)
i influences 𝓁 only through s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

∂s
(l)
i

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

x
(l−1)
j ,

∂𝓁

∂b
(l)
i

=
∂𝓁

∂s
(l)
i

.

François Fleuret Deep learning / 3.6. Back-propagation 5 / 11



Derivatives w.r.t the weights an biases

x(l−1) w (l), b(l)−−−−−→ s(l)
:::::::::::::

σ−−−→ x(l)

Since w
(l)
i,j and b

(l)
i influences 𝓁 only through s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

∂s
(l)
i

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

x
(l−1)
j ,

∂𝓁

∂b
(l)
i

=
∂𝓁

∂s
(l)
i

.

François Fleuret Deep learning / 3.6. Back-propagation 5 / 11



Derivatives w.r.t the weights an biases

x(l−1) w (l), b(l)−−−−−→ s(l)
:::::::::::::

σ−−−→ x(l)

Since w
(l)
i,j and b

(l)
i influences 𝓁 only through s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

∂s
(l)
i

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

x
(l−1)
j ,

∂𝓁

∂b
(l)
i

=
∂𝓁

∂s
(l)
i

.

François Fleuret Deep learning / 3.6. Back-propagation 5 / 11



Derivatives w.r.t the weights an biases

x(l−1) w (l), b(l)−−−−−→ s(l)
σ−−−→ x(l)

Since w
(l)
i,j and b

(l)
i influences 𝓁 only through s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

∂s
(l)
i

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

x
(l−1)
j ,

∂𝓁

∂b
(l)
i

=
∂𝓁

∂s
(l)
i

.

François Fleuret Deep learning / 3.6. Back-propagation 5 / 11



To summarize: we can compute ∂𝓁

∂x
(L)
i

from the definition of 𝓁, and recursively

propagate backward the derivatives of the loss w.r.t the activations with

∂𝓁

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

σ′
(
s
(l)
i

)
and

∂𝓁

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

w
(l)
i,j .

And then compute the derivatives w.r.t the parameters with

∂𝓁

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

x
(l−1)
j ,

and
∂𝓁

∂b
(l)
i

=
∂𝓁

∂s
(l)
i

.

This is the backward pass.

François Fleuret Deep learning / 3.6. Back-propagation 6 / 11



To summarize: we can compute ∂𝓁

∂x
(L)
i

from the definition of 𝓁, and recursively

propagate backward the derivatives of the loss w.r.t the activations with

∂𝓁

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

σ′
(
s
(l)
i

)
and

∂𝓁

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

w
(l)
i,j .

And then compute the derivatives w.r.t the parameters with

∂𝓁

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

x
(l−1)
j ,

and
∂𝓁

∂b
(l)
i

=
∂𝓁

∂s
(l)
i

.

This is the backward pass.

François Fleuret Deep learning / 3.6. Back-propagation 6 / 11



To write in tensorial form we will use the following notation for the gradient of
a loss 𝓁 : RN → R, [

∂𝓁

∂x

]
=


∂𝓁
∂x1
...
∂𝓁
∂xN

 ,

and if ψ : RN×M → R, we will use the notation

[[
∂ψ

∂w

]]
=


∂ψ
∂w1,1

. . . ∂ψ
∂w1,M

...
. . .

...
∂ψ
∂wN,1

. . . ∂ψ
∂wN,M

 .

François Fleuret Deep learning / 3.6. Back-propagation 7 / 11



x(l−1) ×

w(l)

+

b(l)

s(l) σ x(l)

[
∂𝓁

∂x(l)

][
∂𝓁

∂s(l)

]
⊙

σ′

·⊤×
[

∂𝓁
∂x(l−1)

]

[
∂𝓁

∂b(l)

][[
∂𝓁

∂w(l)

]]

× ·⊤

François Fleuret Deep learning / 3.6. Back-propagation 8 / 11



x(l−1) ×

w(l)

+

b(l)

s(l) σ x(l)

[
∂𝓁

∂x(l)

][
∂𝓁

∂s(l)

]
⊙

σ′

·⊤×
[

∂𝓁
∂x(l−1)

]

[
∂𝓁

∂b(l)

][[
∂𝓁

∂w(l)

]]

× ·⊤

François Fleuret Deep learning / 3.6. Back-propagation 8 / 11



x(l−1) ×

w(l)

+

b(l)

s(l) σ x(l)

[
∂𝓁

∂x(l)

]

[
∂𝓁

∂s(l)

]
⊙

σ′

·⊤×
[

∂𝓁
∂x(l−1)

]

[
∂𝓁

∂b(l)

][[
∂𝓁

∂w(l)

]]

× ·⊤

François Fleuret Deep learning / 3.6. Back-propagation 8 / 11



x(l−1) ×

w(l)

+

b(l)

s(l) σ x(l)

[
∂𝓁

∂x(l)

][
∂𝓁

∂s(l)

]
⊙

σ′

·⊤×
[

∂𝓁
∂x(l−1)

]

[
∂𝓁

∂b(l)

][[
∂𝓁

∂w(l)

]]

× ·⊤

∂𝓁

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

σ′
(
s
(l)
i

)

François Fleuret Deep learning / 3.6. Back-propagation 8 / 11



x(l−1) ×

w(l)

+

b(l)

s(l) σ x(l)

[
∂𝓁

∂x(l)

][
∂𝓁

∂s(l)

]
⊙

σ′

·⊤×
[

∂𝓁
∂x(l−1)

]

[
∂𝓁

∂b(l)

][[
∂𝓁

∂w(l)

]]

× ·⊤

∂𝓁

∂x
(l−1)
j

=
∑
i

w
(l)
i,j

∂𝓁

∂s
(l)
i

François Fleuret Deep learning / 3.6. Back-propagation 8 / 11



x(l−1) ×

w(l)

+

b(l)

s(l) σ x(l)

[
∂𝓁

∂x(l)

][
∂𝓁

∂s(l)

]
⊙

σ′

·⊤×
[

∂𝓁
∂x(l−1)

]

[
∂𝓁

∂b(l)

]

[[
∂𝓁

∂w(l)

]]

× ·⊤

∂𝓁

∂b
(l)
i

=
∂𝓁

∂s
(l)
i

François Fleuret Deep learning / 3.6. Back-propagation 8 / 11



x(l−1) ×

w(l)

+

b(l)

s(l) σ x(l)

[
∂𝓁

∂x(l)

][
∂𝓁

∂s(l)

]
⊙

σ′

·⊤×
[

∂𝓁
∂x(l−1)

]

[
∂𝓁

∂b(l)

][[
∂𝓁

∂w(l)

]]

× ·⊤

∂𝓁

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

x
(l−1)
j

François Fleuret Deep learning / 3.6. Back-propagation 8 / 11



x(l−1) ×

w(l)

+

b(l)

s(l) σ x(l)

[
∂𝓁

∂x(l)

][
∂𝓁

∂s(l)

]
⊙

σ′

·⊤×
[

∂𝓁
∂x(l−1)

]

[
∂𝓁

∂b(l)

][[
∂𝓁

∂w(l)

]]

× ·⊤

François Fleuret Deep learning / 3.6. Back-propagation 8 / 11



Forward pass

Compute the activations.

x(0) = x , ∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)

)

Backward pass

Compute the derivatives of the loss w.r.t. the activations.
[
∂𝓁
∂x(L)

]
from the definition of 𝓁

if l < L,
[
∂𝓁
∂x(l)

]
=

(
w (l+1)

)⊤ [
∂𝓁

∂s(l+1)

]
[
∂𝓁

∂s(l)

]
=

[
∂𝓁

∂x(l)

]
⊙ σ′

(
s(l)

)

Compute the derivatives of the loss w.r.t. the parameters.[[
∂𝓁

∂w (l)

]]
=

[
∂𝓁

∂s(l)

](
x(l−1)

)⊤
[
∂𝓁

∂b(l)

]
=

[
∂𝓁

∂s(l)

]
.

Gradient step

Update the parameters.

w (l) ← w (l) − η
[[

∂𝓁

∂w (l)

]]
b(l) ← b(l) − η

[
∂𝓁

∂b(l)

]

François Fleuret Deep learning / 3.6. Back-propagation 9 / 11



Forward pass

Compute the activations.

x(0) = x , ∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)

)
Backward pass

Compute the derivatives of the loss w.r.t. the activations.
[
∂𝓁
∂x(L)

]
from the definition of 𝓁

if l < L,
[
∂𝓁
∂x(l)

]
=

(
w (l+1)

)⊤ [
∂𝓁

∂s(l+1)

]
[
∂𝓁

∂s(l)

]
=

[
∂𝓁

∂x(l)

]
⊙ σ′

(
s(l)

)

Compute the derivatives of the loss w.r.t. the parameters.[[
∂𝓁

∂w (l)

]]
=

[
∂𝓁

∂s(l)

](
x(l−1)

)⊤
[
∂𝓁

∂b(l)

]
=

[
∂𝓁

∂s(l)

]
.

Gradient step

Update the parameters.

w (l) ← w (l) − η
[[

∂𝓁

∂w (l)

]]
b(l) ← b(l) − η

[
∂𝓁

∂b(l)

]

François Fleuret Deep learning / 3.6. Back-propagation 9 / 11



Forward pass

Compute the activations.

x(0) = x , ∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)

)
Backward pass

Compute the derivatives of the loss w.r.t. the activations.
[
∂𝓁
∂x(L)

]
from the definition of 𝓁

if l < L,
[
∂𝓁
∂x(l)

]
=

(
w (l+1)

)⊤ [
∂𝓁

∂s(l+1)

]
[
∂𝓁

∂s(l)

]
=

[
∂𝓁

∂x(l)

]
⊙ σ′

(
s(l)

)

Compute the derivatives of the loss w.r.t. the parameters.[[
∂𝓁

∂w (l)

]]
=

[
∂𝓁

∂s(l)

](
x(l−1)

)⊤
[
∂𝓁

∂b(l)

]
=

[
∂𝓁

∂s(l)

]
.

Gradient step

Update the parameters.

w (l) ← w (l) − η
[[

∂𝓁

∂w (l)

]]
b(l) ← b(l) − η

[
∂𝓁

∂b(l)

]
François Fleuret Deep learning / 3.6. Back-propagation 9 / 11



In spite of its hairy formalization, the backward pass is a simple algorithm:
apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy
computation is concentrated in linear operations, and all the non-linearities go
into component-wise operations.

Without tricks, we have to keep in memory all the activations computed
during the forward pass.

François Fleuret Deep learning / 3.6. Back-propagation 10 / 11



In spite of its hairy formalization, the backward pass is a simple algorithm:
apply the chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy
computation is concentrated in linear operations, and all the non-linearities go
into component-wise operations.

Without tricks, we have to keep in memory all the activations computed
during the forward pass.

François Fleuret Deep learning / 3.6. Back-propagation 10 / 11



Regarding computation, since the costly operation for the forward pass is

s(l) = w (l)x(l−1) + b(l)

and for the backward [
∂𝓁

∂x(l)

]
=

(
w (l+1)

)⊤
[

∂𝓁

∂s(l+1)

]
and [[

∂𝓁

∂w (l)

]]
=

[
∂𝓁

∂s(l)

](
x(l−1)

)⊤
,

the rule of thumb is that the backward pass is twice more expensive than the
forward one.

François Fleuret Deep learning / 3.6. Back-propagation 11 / 11



The end


