Deep learning

3.4. Multi-Layer Perceptrons

François Fleuret
https://fleuret.org/dlc/

A linear classifier of the form

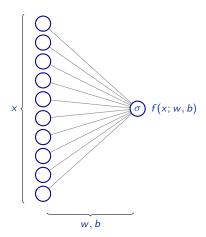
$$\mathbb{R}^D \to \mathbb{R}$$
$$x \mapsto \sigma(w \cdot x + b),$$

with $w \in \mathbb{R}^D$, $b \in \mathbb{R}$, and $\sigma : \mathbb{R} \to \mathbb{R}$, can naturally be extended to a multi-dimension output by applying a similar transformation to every output

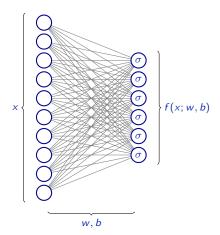
$$\mathbb{R}^D \to \mathbb{R}^C$$
$$x \mapsto \sigma(wx + b),$$

with $w \in \mathbb{R}^{C \times D}$, $b \in \mathbb{R}^C$, and σ is applied component-wise.

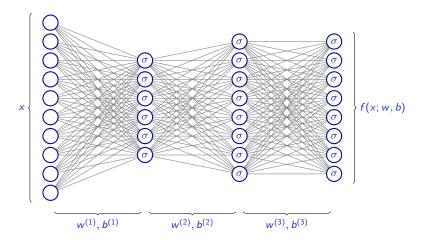
Even though it has no practical value implementation-wise, we can represent such a model as a combination of units. More importantly, we can extend it.



Even though it has no practical value implementation-wise, we can represent such a model as a combination of units. More importantly, we can extend it.



Even though it has no practical value implementation-wise, we can represent such a model as a combination of units. More importantly, we can extend it.



This latter structure can be formally defined, with $x^{(0)} = x$,

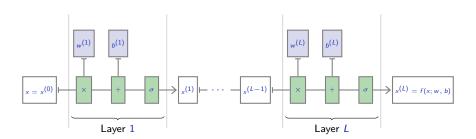
$$\forall l = 1, ..., L, \ x^{(l)} = \sigma \left(w^{(l)} x^{(l-1)} + b^{(l)} \right)$$

and $f(x; w, b) = x^{(L)}$.

This latter structure can be formally defined, with $x^{(0)} = x$,

$$\forall l = 1, ..., L, \ x^{(l)} = \sigma \left(w^{(l)} x^{(l-1)} + b^{(l)} \right)$$

and $f(x; w, b) = x^{(L)}$.



Such a model is a Multi-Layer Perceptron (MLP).

Note that if σ is an affine transformation, the full MLP is a composition of affine mappings, and itself an affine mapping.

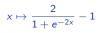
4 / 10

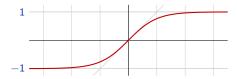
Note that if σ is an affine transformation, the full MLP is a composition of affine mappings, and itself an affine mapping.

Consequently:

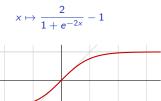
The activation function σ should not be affine. Otherwise the resulting MLP would be an affine mapping with a peculiar parametrization.

The two classical activation functions are the hyperbolic tangent





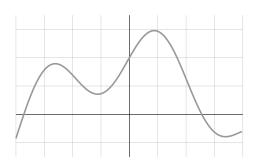
The two classical activation functions are the hyperbolic tangent



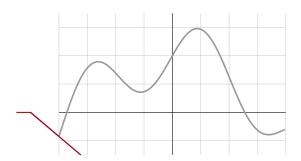
and the rectified linear unit (ReLU, Glorot et al., 2011)

$$x \mapsto \max(0, x)$$

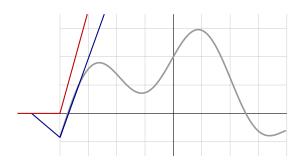
Universal approximation



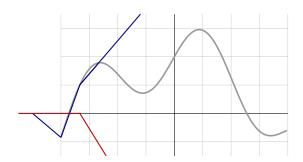
$$f(x) = \sigma(w_1x + b_1)$$



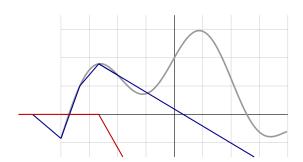
$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2)$$



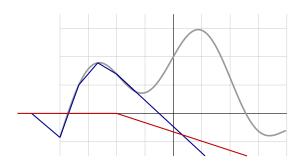
$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3)$$



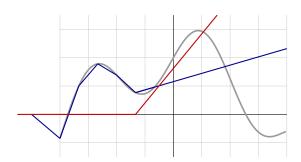
$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$



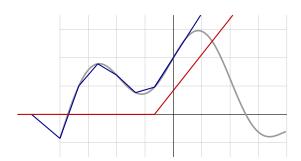
$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$



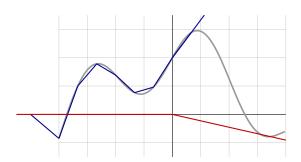
$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$



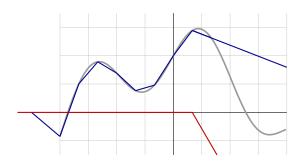
$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$



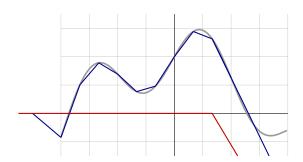
$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$



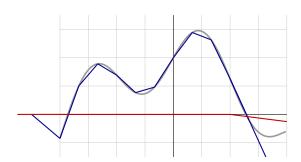
$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$



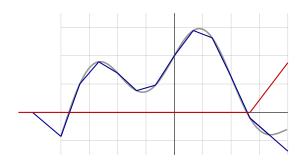
$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$



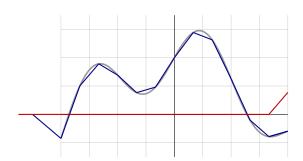
$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$



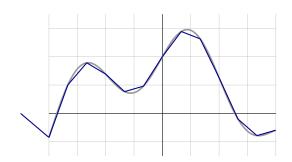
$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$



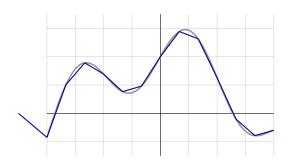
$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$



$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$



$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$



This is true for other activation functions under mild assumptions.

Extending this result to any $\psi \in \mathscr{C}([0,1]^D,\mathbb{R})$ requires a bit of work.

We can approximate the sin function with the previous scheme, and use the density of Fourier series to get the final result:

$$\begin{aligned} \forall \epsilon > 0, \exists K, w \in \mathbb{R}^{K \times D}, b \in \mathbb{R}^{K}, \omega \in \mathbb{R}^{K}, \text{ s.t.} \\ \max_{x \in [0,1]^{D}} |\psi(x) - \omega \cdot \sigma(wx + b)| \leq \epsilon. \end{aligned}$$

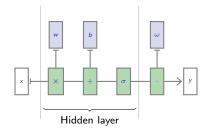
So we can approximate any continuous function

$$\psi: [0,1]^D o \mathbb{R}$$

with a one hidden layer perceptron

$$x \mapsto \omega \cdot \sigma(w x + b),$$

where $b \in \mathbb{R}^K$, $w \in \mathbb{R}^{K \times D}$, and $\omega \in \mathbb{R}^K$.



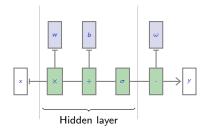
So we can approximate any continuous function

$$\psi: [0,1]^D o \mathbb{R}$$

with a one hidden layer perceptron

$$x \mapsto \omega \cdot \sigma(w x + b),$$

where $b \in \mathbb{R}^K$, $w \in \mathbb{R}^{K \times D}$, and $\omega \in \mathbb{R}^K$.



This is the universal approximation theorem.

A better approximation requires a larger hidden layer (larger K), and this theorem says nothing about the relation between the two.

So this results states that we can make the **training error** as low as we want by using a larger hidden layer. It states nothing about the **test error**.

A better approximation requires a larger hidden layer (larger K), and this theorem says nothing about the relation between the two.

So this results states that we can make the **training error** as low as we want by using a larger hidden layer. It states nothing about the **test error**.

Deploying MLP in practice is often a balancing act between under-fitting and over-fitting.

References

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural	networks. In
International Conference on Artificial Intelligence and Statistics	(AISTATS), 2011.