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Inference from sequences
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Many real-world problems require to process a signal with a sequence structure
of variable size. E.g.

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 2/24



Many real-world problems require to process a signal with a sequence structure

of variable size. E.g.

Sequence classification:
e sentiment analysis,
e activity/action recognition,
¢ DNA sequence classification,

e action selection.

Sequence synthesis:
e text synthesis,
e music synthesis,
e motion synthesis.
Sequence-to-sequence translation:
e speech recognition,
e text translation,

e part-of-speech tagging.
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Given a set 2, if S(2') is the set of sequences of elements from 2":
oo
s@)y=J2"
t=1
We can define formally:
Sequence classification: f:5(2)—{1,...,C}

Sequence synthesis: f:RP — S()

Sequence-to-sequence translation: f: S(2) — S(¥%)
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s@)y=J2"
t=1
We can define formally:
Sequence classification: f:5(2)—{1,...,C}

Sequence synthesis: f:RP — S()

Sequence-to-sequence translation: f: S(2) — S(¥%)

In the rest of the slides we consider only time-indexed signals, although all
techniques generalize to arbitrary sequences.
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Temporal Convolutions
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The simplest approach to sequence processing is to use Temporal
Convolutional Networks (Waibel et al., 1989; Bai et al., 2018).

Such a model is a standard 1d convolutional network, that processes an input of
the maximum possible length.

There has been a renewal of interest since 2018 for such methods for
computational reasons, since they are more amenable to batch processing.
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Increasing exponentially the filter sizes makes the required number of layers
grow in log of the time window T taken into account.

Thanks to dilated convolutions, the model size is O(log T). The memory
footprint and computation are O(T log T).
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Table 1. Evaluation of TCNs and recurrent architectures on synthetic stress tests, polyphonic music modeling, character-level language
modeling, and word-level language modeling. The generic TCN architecture outperforms canonical recurrent networks across a
comprehensive suite of tasks and datasets. Current state-of-the-art results are listed in the supplement. " means that higher is better.
means that lower is better.
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Sequence Modeling Task Model Size (=) Models

LSTM GRU RNN TCN
Seq. MNIST (accuracy") 70K 87.2 96.2 21.5 99.0
Permuted MNIST (accuracy) 70K 85.7 87.3 253 97.2
Adding problem T'=600 (loss‘) 70K 0.164 53e-5 0.177 5.8e-5
Copy memory T'=1000 (loss) 16K 0.0204 0.0197 0.0202 3.5e-5
Music JSB Chorales (loss) 300K 8.45 8.43 8.91 8.10
Music Nottingham (loss) M 3.29 3.46 4.05 3.07
Word-level PTB (perplexity*) 13M 7893 9248 11450 89.21
Word-level Wiki-103 (perplexity) - 48.4 - - 45.19
Word-level LAMBADA (perplexity) - 4186 - 14725 1279
Char-level PTB (bpc[) 3M 1.41 1.42 1.52 1.35
Char-level text8 (bpc) 5M 1.52 1.56 1.69 1.45
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RNN and backprop through time
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The historical approach to processing sequences of variable size relies on a
recurrent model which maintains a recurrent state updated at each time step.

With 2 = RP, given
o(-;w) : RP x R — R?,

an input sequence x € S(RP), and an initial recurrent state hy € R, the
model computes the sequence of recurrent states iteratively

Vi=1,...,T(x), he = ®(xt, ht—1; w).
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The historical approach to processing sequences of variable size relies on a
recurrent model which maintains a recurrent state updated at each time step.

With 2 = RP, given
o(-;w) : RP x R — R?,

an input sequence x € S(RP), and an initial recurrent state hy € R, the
model computes the sequence of recurrent states iteratively

Vi=1,...,T(x), he = ®(xt, ht—1; w).

A prediction can be computed at any time step from the recurrent state
ye = W(hs; w)
with a “readout” function

W(-;w):RY - RE,
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ho hy
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H H : o : T 7
X1 x2 XT—1 XT
w |k
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Even though the number of steps 7 depends on x, this is a standard graph
of tensor operations, and autograd can deal with it as usual.
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Even though the number of steps 7 depends on x, this is a standard graph
of tensor operations, and autograd can deal with it as usual. This is referred to
as “backpropagation through time” (Werbos, 1988).
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We consider the following simple binary sequence classification problem:

e Class 1: the sequence is the concatenation of two identical halves,

e Class 0: otherwise.

E.g.

oo w
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NN
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o
S
)
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In what follows we use the three standard activation functions:

e The rectified linear unit:

ReLU(x) = max(x, 0)

e The hyperbolic tangent:

X X

et —e
tanh =
anh(x) e
e The sigmoid:
. 1
sigm(x) = Tre> .
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And we encode the symbols as one-hot vectors (see lecture 5.1. “Cross-entropy

loss” ):

>>> nb_symbols

>>> s = torch.tensor([0, 1, 2, 3, 2, 1, 0, 5, 0, 5, 0])
>>> x = F.one_hot(s, num_classes = nb_symbols)

>>> x

tensor ([[1,
[o,
[o,
[o,
fo,
fo,
[1,
[o,
[1,
fo,
[1,
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We can build an “Elman network” (Elman, 1990), with hg = 0, the update
he = RelLU (W pyxe + Wy pyhe—1+ b)) (recurrent state)
and the final prediction

yT = Wi yyht + byy).-
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We can build an “Elman network” (Elman, 1990), with hg = 0, the update

he = RelLU (W pyxe + Wy pyhe—1+ b)) (recurrent state)

and the final prediction

y1 = W pht + by

class RecNet (nn.Module):

def

def

__init__(self, dim_input, dim_recurrent, dim_output):
super () .__init__()

self.fc_x2h = nn.Linear(dim_input, dim_recurrent)

self.fc_h2h = nn.Linear(dim_recurrent, dim_recurrent, bias = False)
self.fc_h2y = nn.Linear(dim_recurrent, dim_output)

forward(self, input):
h = input.new_zeros(input.size(0), self.fc_h2y.weight.size(1))
for t in range(input.size(1)):

h = F.relu(self.fc_x2h(input[:, t]) + self.fc_h2h(h))
return self.fc_h2y(h)
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We can build an “Elman network” (Elman, 1990), with hg = 0, the update
he = RelLU (W pyxe + Wy pyhe—1+ b)) (recurrent state)
and the final prediction
YT =Wh pht + by

class RecNet (nn.Module):
def __init__(self, dim_input, dim_recurrent, dim_output):
super () .__init__()
self.fc_x2h = nn.Linear(dim_input, dim_recurrent)
self.fc_h2h = nn.Linear(dim_recurrent, dim_recurrent, bias = False)
self.fc_h2y = nn.Linear(dim_recurrent, dim_output)

def forward(self, input):
h = input.new_zeros(input.size(0), self.fc_h2y.weight.size(1))
for t in range(input.size(1)):
h = F.relu(self.fc_x2h(input[:, t]) + self.fc_h2h(h))
return self.fc_h2y(h)

A For simplicity, we process a batch of sequences of same length.
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Thanks to autograd, the training can be implemented as

generator = SequenceGenerator (nb_symbols = 10,
pattern_length_min = 1, pattern_length_max = 10,
one_hot = True)

model = RecNet(dim_input = 10,
dim_recurrent = 50,
dim_output = 2)

cross_entropy = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), 1lr = 1lr)

for k in range(args.nb_train_samples):
input, target = generator.batch_of_one()
output = model (input)
loss = cross_entropy(output, target)
optimizer.zero_grad()
loss.backward ()
optimizer.step()
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Gating
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When unfolded through time, the model depth is proportional to the input
length, and training it involves in particular dealing with vanishing gradients.

An important idea in the RNN models used in practice is to add in a form or
another a pass-through, so that the recurrent state does not go repeatedly
through a squashing non-linearity.

This is highly related to the residual connections that were introduced later in
computer vision (see lecture 6.5. “Residual networks”).

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 19 / 24



For instance, the recurrent state update can be a per-component weighted
average of its previous value h;_; and a full update h¢, with the weighting z;
depending on the input and the recurrent state, acting as a “forget gate”.
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For instance, the recurrent state update can be a per-component weighted
average of its previous value h;_; and a full update h¢, with the weighting z;
depending on the input and the recurrent state, acting as a “forget gate”.

So the model has an additional “gating” output
f:RP xR? — [0,1]9,
and the update rule takes the form
he = ®(xe, he—1)
zt = f(xt, ht—1) ~
ht =zt © hy—1+ (1 — zt) © he,

where © stands for the usual component-wise Hadamard product.
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We can improve our minimal example with such a mechanism, replacing

h: = ReLU (W(X mXe + W pyhe—1 + b(h)) (recurrent state)
with

he = ReLU (W myxt + Wi, nyhe—1+ bipy) (full update)

z¢ = sigm (W(X Xt + W oyhe—1 + b(z)) (forget gate)

ht=zeOh14+(1—2z)®ht (recurrent state)
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class RecNetWithGating(nn.Module):
def __init__(self, dim_input, dim_recurrent, dim_output):
super (). __init__()

self
self
self
self

self

.fc_x2h = nn

.fc_h2h = nn
.fc_x2z = nn
.fc_h2z = nn

.fc_h2y = nn

.Linear(dim_input, dim_recurrent)
.Linear(dim_recurrent, dim_recurrent, bias = False)
.Linear(dim_input, dim_recurrent)
.Linear(dim_recurrent, dim_recurrent, bias = False)

.Linear(dim_recurrent, dim_output)

def forward(self, input):

input.new_zeros (input.size(0), self.fc_h2y.weight.size(1))
for t in range(input.size(1)):

z = torch.sigmoid(self.fc_x2z(input[:, t]) + self.fc_h2z(h))
hb = F.relu(self.fc_x2h(input[:, t]) + self.fc_h2h(h))

h =

h=2z%h+

(1 - z) * hb

return self.fc_h2y(h)
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The end



References

S. Bai, J. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. CoRR, abs/1803.01271, 2018.

J. L. EIman. Finding structure in time. Cognitive Science, 14(2):179 — 211, 1990.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang. Phoneme recognition
using time-delay neural networks. |IEEE Transactions on Acoustics, Speech, and Signal
Processing, 37(3):328-339, 1989.

P. J. Werbos. Generalization of backpropagation with application to a recurrent gas
market model. Neural Networks, 1(4):339-356, 1988.




	Inference from sequences
	Temporal Convolutions
	RNN and backprop through time
	Gating
	References

