Deep learning

12.1. Recurrent Neural Networks

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE

https://fleuret.org/dlc/

Inference from sequences

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 1/24

Many real-world problems require to process a signal with a sequence structure
of variable size. E.g.

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 2/24

Many real-world problems require to process a signal with a sequence structure

of variable size. E.g.

Sequence classification:
e sentiment analysis,
e activity/action recognition,
¢ DNA sequence classification,

e action selection.

Sequence synthesis:
e text synthesis,
e music synthesis,
e motion synthesis.
Sequence-to-sequence translation:
e speech recognition,
e text translation,

e part-of-speech tagging.

Deep learning / 12.1. Recurrent Neural Networks

2/24

Given a set 2, if S(2') is the set of sequences of elements from 2":
oo
s@)y=J2"
t=1
We can define formally:
Sequence classification: f:5(2)—{1,...,C}

Sequence synthesis: f:RP — S()

Sequence-to-sequence translation: f: S(2) — S(¥%)

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 3/24

Given a set 2, if S(2') is the set of sequences of elements from 2":
oo
s@)y=J2"
t=1
We can define formally:
Sequence classification: f:5(2)—{1,...,C}

Sequence synthesis: f:RP — S()

Sequence-to-sequence translation: f: S(2) — S(¥%)

In the rest of the slides we consider only time-indexed signals, although all
techniques generalize to arbitrary sequences.

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 3/24

Temporal Convolutions

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 4 /24

The simplest approach to sequence processing is to use Temporal
Convolutional Networks (Waibel et al., 1989; Bai et al., 2018).

Such a model is a standard 1d convolutional network, that processes an input of
the maximum possible length.

There has been a renewal of interest since 2018 for such methods for
computational reasons, since they are more amenable to batch processing.

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 5/24

Output

Hidden

LI R R U] e e e T U) L R S T S U Hidden

""'"""""""""""Input

Francois Fleuret

T

Increasing exponentially the filter sizes makes the required number of layers
grow in log of the time window T taken into account.

Thanks to dilated convolutions, the model size is O(log T). The memory
footprint and computation are O(T log T).

Deep learning / 12.1. Recurrent Neural Networks

6/ 24

Table 1. Evaluation of TCNs and recurrent architectures on synthetic stress tests, polyphonic music modeling, character-level language
modeling, and word-level language modeling. The generic TCN architecture outperforms canonical recurrent networks across a
comprehensive suite of tasks and datasets. Current state-of-the-art results are listed in the supplement. " means that higher is better.
means that lower is better.

13

Francois Fleuret

Sequence Modeling Task Model Size (=) Models

LSTM GRU RNN TCN
Seq. MNIST (accuracy") 70K 87.2 96.2 21.5 99.0
Permuted MNIST (accuracy) 70K 85.7 87.3 253 97.2
Adding problem T'=600 (loss‘) 70K 0.164 53e-5 0.177 5.8e-5
Copy memory T'=1000 (loss) 16K 0.0204 0.0197 0.0202 3.5e-5
Music JSB Chorales (loss) 300K 8.45 8.43 8.91 8.10
Music Nottingham (loss) M 3.29 3.46 4.05 3.07
Word-level PTB (perplexity*) 13M 7893 9248 11450 89.21
Word-level Wiki-103 (perplexity) - 48.4 - - 45.19
Word-level LAMBADA (perplexity) - 4186 - 14725 1279
Char-level PTB (bpc[) 3M 1.41 1.42 1.52 1.35
Char-level text8 (bpc) 5M 1.52 1.56 1.69 1.45

Deep learning / 12.1. Recurrent Neural Networks

(Bai et al., 2018)

7/2

RNN and backprop through time

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 8 /24

The historical approach to processing sequences of variable size relies on a
recurrent model which maintains a recurrent state updated at each time step.

With 2 = RP, given
o(-;w) : RP x R — R?,

an input sequence x € S(RP), and an initial recurrent state hy € R, the
model computes the sequence of recurrent states iteratively

Vi=1,...,T(x), he = ®(xt, ht—1; w).

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 9 /24

Francois Fleuret

The historical approach to processing sequences of variable size relies on a
recurrent model which maintains a recurrent state updated at each time step.

With 2 = RP, given
o(-;w) : RP x R — R?,

an input sequence x € S(RP), and an initial recurrent state hy € R, the
model computes the sequence of recurrent states iteratively

Vi=1,...,T(x), he = ®(xt, ht—1; w).

A prediction can be computed at any time step from the recurrent state
ye = W(hs; w)
with a “readout” function

W(-;w):RY - RE,

Deep learning / 12.1. Recurrent Neural Networks 9 /24

ho hy

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 10 / 24

H H : o : T 7
X1 x2 XT—1 XT
w |k

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 10 / 24

[HEm -]

H H : . . hT_l
X1 x2 XT—1 XT
w |k

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 10 / 24

Francois Fleuret

ho

Y1

[HE |

yTo1

hr_1

Deep learning / 12.1. Recurrent Neural Networks

[HEm -]

10 / 24

Y1

<

1
H hy Iy - Bﬁ
Il Il I

Even though the number of steps 7 depends on x, this is a standard graph
of tensor operations, and autograd can deal with it as usual.

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 10 / 24

Y1

<

Even though the number of steps 7 depends on x, this is a standard graph
of tensor operations, and autograd can deal with it as usual. This is referred to
as “backpropagation through time” (Werbos, 1988).

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 10 / 24

Francois Fleuret

We consider the following simple binary sequence classification problem:

e Class 1: the sequence is the concatenation of two identical halves,

e Class 0: otherwise.

E.g.

oo w
~N W
-

NN
BN B ON
o
S
)

Deep learning / 12.1. Recurrent Neural Networks

= RO O O

11/ 24

In what follows we use the three standard activation functions:

e The rectified linear unit:

ReLU(x) = max(x, 0)

e The hyperbolic tangent:

X X

et —e
tanh =
anh(x) e
e The sigmoid:
. 1
sigm(x) = Tre> .

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 12 /24

Francois Fleuret

And we encode the symbols as one-hot vectors (see lecture 5.1. “Cross-entropy

loss”):

>>> nb_symbols

>>> s = torch.tensor([0, 1, 2, 3, 2, 1, 0, 5, 0, 5, 0])
>>> x = F.one_hot(s, num_classes = nb_symbols)

>>> x

tensor ([[1,
[o,
[o,
[o,
fo,
fo,
[1,
[o,
[1,
fo,
[1,

OO 0000 Or OO

B

0
1
0
0
0
1
0
0
0
0
0

B

[eNelNeNeNeNeNe il e NeNe)

OO O0OO0OO0OO0OO0OOOOoOOo

o1,
o1,
o1,
ol,
01,
o1,
o],
1],
ol,
1],
01

Deep learning / 12.1. Recurrent Neural Networks

13 /24

We can build an “Elman network” (Elman, 1990), with hg = 0, the update
he = RelLU (W pyxe + Wy pyhe—1+ b)) (recurrent state)
and the final prediction

yT = Wi yyht + byy).-

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 14 / 24

Francois Fleuret

We can build an “Elman network” (Elman, 1990), with hg = 0, the update

he = RelLU (W pyxe + Wy pyhe—1+ b)) (recurrent state)

and the final prediction

y1 = W pht + by

class RecNet (nn.Module):

def

def

__init__(self, dim_input, dim_recurrent, dim_output):
super () .__init__()

self.fc_x2h = nn.Linear(dim_input, dim_recurrent)

self.fc_h2h = nn.Linear(dim_recurrent, dim_recurrent, bias = False)
self.fc_h2y = nn.Linear(dim_recurrent, dim_output)

forward(self, input):
h = input.new_zeros(input.size(0), self.fc_h2y.weight.size(1))
for t in range(input.size(1)):

h = F.relu(self.fc_x2h(input[:, t]) + self.fc_h2h(h))
return self.fc_h2y(h)

Deep learning / 12.1. Recurrent Neural Networks 14 / 24

Francois Fleuret

We can build an “Elman network” (Elman, 1990), with hg = 0, the update
he = RelLU (W pyxe + Wy pyhe—1+ b)) (recurrent state)
and the final prediction
YT =Wh pht + by

class RecNet (nn.Module):
def __init__(self, dim_input, dim_recurrent, dim_output):
super () .__init__()
self.fc_x2h = nn.Linear(dim_input, dim_recurrent)
self.fc_h2h = nn.Linear(dim_recurrent, dim_recurrent, bias = False)
self.fc_h2y = nn.Linear(dim_recurrent, dim_output)

def forward(self, input):
h = input.new_zeros(input.size(0), self.fc_h2y.weight.size(1))
for t in range(input.size(1)):
h = F.relu(self.fc_x2h(input[:, t]) + self.fc_h2h(h))
return self.fc_h2y(h)

A For simplicity, we process a batch of sequences of same length.

Deep learning / 12.1. Recurrent Neural Networks 14 / 24

Thanks to autograd, the training can be implemented as

generator = SequenceGenerator (nb_symbols = 10,
pattern_length_min = 1, pattern_length_max = 10,
one_hot = True)

model = RecNet(dim_input = 10,
dim_recurrent = 50,
dim_output = 2)

cross_entropy = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), 1lr = 1lr)

for k in range(args.nb_train_samples):
input, target = generator.batch_of_one()
output = model (input)
loss = cross_entropy(output, target)
optimizer.zero_grad()
loss.backward ()
optimizer.step()

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 15 / 24

Francois Fleuret

Error

0.5 1

0.4 1

0.3 1

0.2

0.1

0.0

elman

50000

100000 150000
Nb. sequences seen

Deep learning / 12.1. Recurrent Neural Networks

200000

250000

16 / 24

—8— elman
0.5

0.4 1

0.3 1

Error

0.2

0.1

0.0 f T T T T T T T T
2 4 6 8 10 12 14 16 18 20

Sequence length

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 17 / 24

Gating

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 18 / 24

When unfolded through time, the model depth is proportional to the input
length, and training it involves in particular dealing with vanishing gradients.

An important idea in the RNN models used in practice is to add in a form or
another a pass-through, so that the recurrent state does not go repeatedly
through a squashing non-linearity.

This is highly related to the residual connections that were introduced later in
computer vision (see lecture 6.5. “Residual networks”).

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 19 / 24

For instance, the recurrent state update can be a per-component weighted
average of its previous value h;_; and a full update h¢, with the weighting z;
depending on the input and the recurrent state, acting as a “forget gate”.

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 20/ 24

Francois Fleuret

For instance, the recurrent state update can be a per-component weighted
average of its previous value h;_; and a full update h¢, with the weighting z;
depending on the input and the recurrent state, acting as a “forget gate”.

So the model has an additional “gating” output
f:RP xR? — [0,1]9,
and the update rule takes the form
he = ®(xe, he—1)
zt = f(xt, ht—1) ~
ht =zt © hy—1+ (1 — zt) © he,

where © stands for the usual component-wise Hadamard product.

Deep learning / 12.1. Recurrent Neural Networks 20/ 24

We can improve our minimal example with such a mechanism, replacing

h: = ReLU (W(X mXe + W pyhe—1 + b(h)) (recurrent state)
with

he = ReLU (W myxt + Wi, nyhe—1+ bipy) (full update)

z¢ = sigm (W(X Xt + W oyhe—1 + b(z)) (forget gate)

ht=zeOh14+(1—2z)®ht (recurrent state)

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks

21/ 24

class RecNetWithGating(nn.Module):
def __init__(self, dim_input, dim_recurrent, dim_output):
super (). __init__()

self
self
self
self

self

.fc_x2h = nn

.fc_h2h = nn
.fc_x2z = nn
.fc_h2z = nn

.fc_h2y = nn

.Linear(dim_input, dim_recurrent)
.Linear(dim_recurrent, dim_recurrent, bias = False)
.Linear(dim_input, dim_recurrent)
.Linear(dim_recurrent, dim_recurrent, bias = False)

.Linear(dim_recurrent, dim_output)

def forward(self, input):

input.new_zeros (input.size(0), self.fc_h2y.weight.size(1))
for t in range(input.size(1)):

z = torch.sigmoid(self.fc_x2z(input[:, t]) + self.fc_h2z(h))
hb = F.relu(self.fc_x2h(input[:, t]) + self.fc_h2h(h))

h =

h=2z%h+

(1 - z) * hb

return self.fc_h2y(h)

Francois Fleuret

Deep learning / 12.1. Recurrent Neural Networks 22 /24

elman
0.5 gating
0.4
. 0.3 1
o
i
0.2
0.1
0.0 T T T T T
0 50000 100000 150000 200000 250000

Nb. sequences seen

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 23 /24

—8— elman
0.5 —8— gating
0.4 4
. 0.3 1
o
i
0.2 1
0.1 1

0.0 - T T T
2 4 6 8 10 12 14 16 18 20

Sequence length

Francois Fleuret Deep learning / 12.1. Recurrent Neural Networks 24 /24

The end

References

S. Bai, J. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. CoRR, abs/1803.01271, 2018.

J. L. EIman. Finding structure in time. Cognitive Science, 14(2):179 — 211, 1990.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang. Phoneme recognition
using time-delay neural networks. |IEEE Transactions on Acoustics, Speech, and Signal
Processing, 37(3):328-339, 1989.

P. J. Werbos. Generalization of backpropagation with application to a recurrent gas
market model. Neural Networks, 1(4):339-356, 1988.

	Inference from sequences
	Temporal Convolutions
	RNN and backprop through time
	Gating
	References

