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Auto-regression methods model components of a signal serially, each one
conditionally to the ones already modeled.

They rely on the chain rule from probability theory: given Xi,..., X1 random
variables, we have

Vxi, ..o, xT, P(X1=x1,..., X7 =x7) =
P(Xl :Xl)P(XQ = X2 | Xl :Xl)...P(XT = XT ‘ Xl :X1>~'~7XT—1 :XT,:[).
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Auto-regression methods model components of a signal serially, each one
conditionally to the ones already modeled.

They rely on the chain rule from probability theory: given Xi, ..., X7 random
variables, we have

Vxi, ..o, xT, P(X1=x1,..., X7 =x7) =
P(Xl :Xl)P(XQ = X2 | Xl :Xl)...P(XT = XT ‘ Xl :X1>~'~7XT—1 :XT,:[).

Deep neural networks are a fitting class of models for such conditional densities
when dealing with large dimension signal (Larochelle and Murray, 2011).
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Given a sequence of random variables Xi,..., X7 on R, we can represent a
conditioning event of the form

Xi1) = X1, -+, Xy(n) = Xn

with two tensors of dimension T: the first a Boolean mask stating which
variables are conditioned, and the second the actual conditioning values.

E.g., with T =5

Event Mask tensor Value tensor
{X> =3} [0,1,0,0,0] [0,3,0,0,0]
{X1=1,X%=2,X3=3,X4 =4,Xs =5} [1,1,1,1,1] [1,2,3,4,5]
{Xs =50, X, = 20} [0,1,0,0,1] [0, 20,0,0,50]
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In what follows, we will consider only finite distributions over C real values.

Hence we can model a conditional distribution with a mapping that maps a pair
mask / known values to a distribution for the next value of the sequence:

£:{0,1}9 x R? — R,

where the C output values can be either probabilities, or as we will prefer, logits.
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In what follows, we will consider only finite distributions over C real values.

Hence we can model a conditional distribution with a mapping that maps a pair
mask / known values to a distribution for the next value of the sequence:

£:{0,1}9 x R? — R,
where the C output values can be either probabilities, or as we will prefer, logits.

This can be generalized beyond categorical distributions by mapping to
parameters of any distribution.
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Given such a model and a sampling procedure sample, the generative process
for a full sequence is

x1 ¢ sample (f({}))
xz = sample (f({X1 = x1}))
x3 + sample (f({X1 = x1, X2 = x2}))

XT < sample(f({X1 =x1,Xo0 =x2,...,X7_1= XT—l}))
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For instance, with C = 3 and T = 5, we could have:

{1
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For instance, with C = 3 and T = 5, we could have:

Mask and values

f—/%
[t o, 0, 0, 0,01
G [0, 0, 0,0,0]

B > 5 >

]
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For instance, with C = 3 and T = 5, we could have:

Mask and values

Distribution
f—/%
—_——
[[ 0, 0,0,0,0]1 f
0 [0,0,00011 L0.1,0.5, 041
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For instance, with C = 3 and T = 5, we could have:

Mask and values

Distribution
f—/%
—_——
[t o, o, 0, 0, 01 f sample
O o,0,0 0013 [0 05 04]——"2
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For instance, with C = 3 and T = 5, we could have:

Mask and values

Distribution
f—/%
—_——
[t o, o, 0, 0, 01 f sample
O o,0,0 0013 > [01 05 04]——"2

{X1 =2}
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For instance, with C = 3 and T = 5, we could have:

Mask and values

Distribution
/—/%
—_——

[t o, o, 0, 0, 01 f sample
0 [0,0,00011 L0.1,0.5, 041

(L1, 0,0,0,0]
X =2} —
Da =2} [2,0,0,0,01]
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For instance, with C = 3 and T = 5, we could have:

Mask and values T
Distribution

—_——
f
—> [ 0.1, 0.5, 0.4 ]

sample

0 [f 0, 0, 0, 0,01
[0, 0,0,0,01]

ety — 8%]—f>[o‘s, 0.2, 0.2 ]
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For instance, with C = 3 and T = 5, we could have:

Mask and values

Distribution
[PE—
[t o, o, 0, 0, 01 f sample
& [o 0 o o 0] L0105 04]
[C1, 0, 0, 0, 0] f sample
X =2 6, 0.2, 0.
X =2} [2 0 0 0 0317 > [06, 02 0.2]
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For instance, with C = 3 and T = 5, we could have:

Mask and values

Distribution
—_——
0, 0,0,0,0 f sample
O [Eoooooﬁlé[o'i’o's’o"l]
1, 0, 0, 0, 0 f sample
(X1 =2} é[g2 PP O%Jé[o‘s, 0.2, 0.2 ]
{X1=2,% =1}
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For instance, with C = 3 and T = 5, we could have:

Mask and values

Distribution

/—/ﬁ
0, 0,0, 0,0 f sample

0 [Eoooooﬁlé[o'i’o's’o"l]
1, 0,0,0,0 f sample

{mﬂ}#%z o o o 0%]—>[0‘6, 0.2, 0.2 ]
1,1, 0,0, 0 f sample

X =2,X%=1 —5 [E 5 10 o o %] ——> [0.1, 0.0, 0.9 ]
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For instance, with C = 3 and T = 5, we could have:

Mask and values

Distribution

/—/ﬁ
0, 0,0, 0,0 f sample

0 [Eoooooﬁlé[o'i’o's’o"l]
1, 0,0,0,0 f sample

{mﬂ}#%z o o o 0%]—>[0‘6, 0.2, 0.2 ]
1,1, 0,0, 0 f sample

X =2,X%=1 —5 [E 5 10 o o %] ——> [0.1, 0.0, 0.9 ]

{X1=2,% =1,X3 =2}
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For instance, with C = 3 and T = 5, we could have:

{1

=2 —

{X1=2,%=1} ——>

{X1=2,% =1,X3 =2} —>
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Mask and values

Distribution

[t

[ 2

L

[ 2

0,
0,

N =

[

—_——

0, 0, 0,
0, 0, 0,

o

]

£
1 ——> [ 0.1, 0.5,

o

f
—> [ 0.6, 0.2,

Deep learning / 10.1. Auto-regression

0.4 1]

0.2 ]

0.9 1

0.31]

sample

sample

sample

sample

5/25



Francois Fleuret

The package torch.distributions provides the necessary tools to sample
from a variety of distributions.

>>> 1 = torch.tensor([ 1log(0.8), log(0.1), log(0.1) 1)

>>> dist = torch.distributions.categorical.Categorical(logits = 1)
>>> s = dist.sample((10000,))

>>> (s.view(-1, 1) == torch.arange(3).view(1, -1)).float().mean(0)
tensor ([0.8037, 0.0988, 0.0975])
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The package torch.distributions provides the necessary tools to sample
from a variety of distributions.

>>> 1 = torch.tensor([ 1log(0.8), log(0.1), log(0.1) 1)

>>> dist = torch.distributions.categorical.Categorical(logits = 1)
>>> s = dist.sample((10000,))

>>> (s.view(-1, 1) == torch.arange(3).view(1, -1)).float().mean(0)
tensor ([0.8037, 0.0988, 0.0975])

Sampling can also be done in batch

>>> 1 = torch.tensor([[ 1og(0.90), 1log(0.10) 1,
[ 1og(0.50), 1log(0.50) 1,
[ 1og(0.25), 1o0g(0.75) 1,
- [ 1og(0.01), 10g(0.99) 11)
>>> dist = torch.distributions.categorical.Categorical(logits = 1)
>>> dist.sample((8,))
tensor([[0, 1, 1, 1],

[o, 1, 1, 11,
[0, 0, 1, 11,
[0, 1, o0, 11,
[1, 0, 1, 11,
[o, 1, 1, 11,
fo, 1, 1, 11,
[0, 0, 1, 111
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With a finite distribution and the output values interpreted as logits, training
consists of maximizing the likelihood of the training samples, hence minimizing

Z(f)

~ > T log B(Xe = xne | Xt = 01,y Xee1 = Xne—1)
n t

sz(f((la ., L0, '70)?()(",17 e 7Xn,tfl~,07 .. ~70))7Xn,t>
n t

where ¢ is the cross-entropy.
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In practice, for each batch, we sample a position to predict for each sample at
random, from which we build the masks, conditioning values, and target values.

Training Sequences

({3 1,8,1,0,31,
[2,3,0,9,6,5],
[7z,1,5,7,3,11,
[6,0,2,3,1,91]
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In practice, for each batch, we sample a position to predict for each sample at
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In practice, for each batch, we sample a position to predict for each sample at
random, from which we build the masks, conditioning values, and target values.

Input (masks)

(ct+, 1, 0,0,0,01,
[1, 1, 1,1, 1, 01,
Training Sequences (i 1,1,0,0, 01,
& ><d [1,0,0,0,0,01]
(3, 1,6 1,0, 31,
[2,30,9,6,®1, 3
(7,15 @® 3,11, Input (values)
(6,0 2,3, 1, 91]
[(rs, 1 0,0,0,01,
[2,3,0,9,6,01,
[7,1,5,0,0,01,
[6, 0, 0,0,0,01]
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In practice, for each batch, we sample a position to predict for each sample at
random, from which we build the masks, conditioning values, and target values.

Input (masks)

[(t+, 1, 0,0,0,01,
[1,1,1,1, 1,01,
Training Sequences E 1’ (1)’ L, 8’ g’ 0 %]’ Targets
,0,0,0,0,0 A
3, 1,® 1,0, 31, [8,
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[7,15,0,0,01,
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Consider a toy problem, where sequences from {1,..., C}7T are split in two at a
random position, and are linear in both parts, with slopes ~ % ([—1, 1]).

Values are re-centered and discretized into 2T values.
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Some train sequences
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Model

class Net(nn.Module):
def __init__(self, nb_values):
super().__init__Q)

self.features = nn.Sequential(

)

self.fc
nn.
nn.

)

EEEEEE

nn

nn.

.Convid(2, 32, kernel_size = 5),
.ReLUQ),

.MaxPoo011d(2),

.Conv1d (32, 64, kernel_size = 5),
.ReLUQ),

.MaxPool1d(2),

.ReLUQ),

= nn.Sequential(
Linear (320, 200),
ReLU(),
Linear (200, nb_values)

def forward(self, x):

x = self.features(x)

x = x.view(x.size(0), -1)
x = self.fc(x)

return x

Francois Fleuret
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Training loop

for sequences in train_sequences.split(batch_size):

Francois Fleuret

nb = sequences.size(0)
# Select a random index in each sequence, this is our targets
idx = torch.randint(len, (nb, 1), device = sequences.device)

targets = sequences.gather (1, idx).view(-1)

# Create masks and values accordingly

tics = torch.arange(len, device = sequences.device).view(1l, -1).expand(nb, -1)

masks = (tics < idx.expand(-1, len)).float()
values = (sequences.float() - mean) / std * masks

# Make masks and values one-channel and concatenate them along
# channels to make the input
input = torch.cat((masks.unsqueeze(1), values.unsqueeze(1)), 1)

# Compute the loss and make the gradient step
output = model(input)
loss = cross_entropy(output, targets)

optimizer.zero_grad()

loss.backward()
optimizer.step()
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Synthesis

nb = 25
generated = torch.zeros(nb, len, device = device, dtype = torch.int64)
tics = torch.arange(len, device = device).view(l, -1).expand(nb, -1)

for t in range(len):
masks = (tics < t).float()
values = (generated.float() - mean) / std * masks
input = torch.cat((masks.unsqueeze(1), values.unsqueeze(1)), 1)
output = model(input)
dist = torch.distributions.categorical.Categorical(logits = output)
generated[:, t] = dist.sample()
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Some generated sequences
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Image auto-regression
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The exact same auto-regressive approach generalizes to any tensor shape, as
long as a visiting order of the coefficients is provided.

For instance, for images, we can visit pixels in the “raster scan order”
corresponding to the standard mapping in memory, top-to-bottom, left-to-right.
image_masks = torch.empty(16, 1, 6, 6)

for k in range(image_masks.size(0)):

sequence_mask = torchAarange(l * 6 % 6) < k
image_masks[k] = sequence_mask.float().view(1l, 6, 6)

| | || | __F

I = = R . . . .
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We define two functions to serialize the image tensors into sequences

def seq2tensor(s):
return s.reshape(-1, 1, 28, 28)

def tensor2seq(s):
return s.reshape(-1, 28 * 28)
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Model

class LeNetMNIST(nn.Module):
def __init__(self, nb_classes):
super () .__init__()

self.features = nn.Sequential(
nn.Conv2d(2, 32, kernel_size = 3),
nn.MaxPool2d(kernel_size = 2),
nn.ReLUQ),
nn.Conv2d (32, 64, kernel_size = 5),
nn.ReLUQ),

self.fc = nn.Sequential(
nn.Linear(64 * 81, 512),
nn.ReLUQ),
nn.Linear (512, nb_classes)

)

def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
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Training loop

for data in train_input.split(args.batch_size):

# Make 1d sequences from the images
sequences = tensor2seq(data)
nb, len = sequences.size(0), sequences.size(1)

# Select a random index in each sequence, this is our targets
idx = torch.randint(len, (nb, 1), device = device)

targets = sequences.gather(l, idx).view(-1)

# Create masks and values accordingly

tics = torch.arange(len, device = device).view(1l, -1).expand(nb, -1)

masks = seq2tensor((tics < idx.expand(-1, len)).float())
values = (data.float() - mu) / std * masks

# Make the input, set the mask and values as two channels
input = torch.cat((masks, values), 1)

# Compute the loss and make the gradient step
output = model(input)
loss = cross_entropy(output, targets)

optimizer.zero_grad()

loss.backward()
optimizer.step()
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Synthesis

nb = 48
generated = torch.zeros((nb,) + train_input.shape[1:],
device = device, dtype = torch.int64)
sequences = tensor2seq(generated)
tics = torch.arange(sequences.size(1), device = device).view(1l, -1).expand(nb, -1)

for t in range(sequences.size(1)):
masks = seq2tensor((tics < t).float())
values = (seq2tensor(sequences).float() - mu) / std * masks
input = torch.cat((masks, values), 1)
output = model(input)
dist = torch.distributions.categorical.Categorical(logits = output)
sequences[:, t] = dist.sample()
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Masks, generated pixels so far, and posterior on the next pixel to generate (red
dot), as predicted by the model (logscale). White is 0 and black is 255.
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Some remarks:

e The index ordering for the sampling is a design decision. It can be fixed
during train and test, or be adaptive.
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Some remarks:
e The index ordering for the sampling is a design decision. It can be fixed
during train and test, or be adaptive.

e Even when there is a clear metric structure on the value space, best results
are obtained with cross-entropy over a discretization of it.

This is due in large part to the ability of categorical distributions and
cross-entropy to deal with exotic posteriors, in particular multi-modal.
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1

Blyn) "

If the predicted posterior was uniform on N values, this loss value would
correspond to N = e’7. This is the perplexity and is often monitored as a
more intuitive quantity.

« The cross entropy for a sample is £, = — log p(y») hence e’ =
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The end
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