
Deep learning

10.1. Auto-regression

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

Auto-regression methods model components of a signal serially, each one
conditionally to the ones already modeled.

They rely on the chain rule from probability theory: given X1, . . . ,XT random
variables, we have

∀x1, . . . , xT , P(X1 = x1, . . . ,XT = xT) =

P(X1 = x1)P(X2 = x2 | X1 = x1) . . .P(XT = xT | X1 = x1, . . . ,XT−1 = xT−1).

Deep neural networks are a fitting class of models for such conditional densities
when dealing with large dimension signal (Larochelle and Murray, 2011).

François Fleuret Deep learning / 10.1. Auto-regression 1 / 25

Auto-regression methods model components of a signal serially, each one
conditionally to the ones already modeled.

They rely on the chain rule from probability theory: given X1, . . . ,XT random
variables, we have

∀x1, . . . , xT , P(X1 = x1, . . . ,XT = xT) =

P(X1 = x1)P(X2 = x2 | X1 = x1) . . .P(XT = xT | X1 = x1, . . . ,XT−1 = xT−1).

Deep neural networks are a fitting class of models for such conditional densities
when dealing with large dimension signal (Larochelle and Murray, 2011).

François Fleuret Deep learning / 10.1. Auto-regression 1 / 25

Given a sequence of random variables X1, . . . ,XT on R, we can represent a
conditioning event of the form

Xt(1) = x1, . . . ,Xt(N) = xN

with two tensors of dimension T : the first a Boolean mask stating which
variables are conditioned, and the second the actual conditioning values.

E.g., with T = 5

Event Mask tensor Value tensor

{X2 = 3} [0, 1, 0, 0, 0] [0, 3, 0, 0, 0]

{X1 = 1,X2 = 2,X3 = 3,X4 = 4,X5 = 5} [1, 1, 1, 1, 1] [1, 2, 3, 4, 5]

{X5 = 50,X2 = 20} [0, 1, 0, 0, 1] [0, 20, 0, 0, 50]

François Fleuret Deep learning / 10.1. Auto-regression 2 / 25

In what follows, we will consider only finite distributions over C real values.

Hence we can model a conditional distribution with a mapping that maps a pair
mask / known values to a distribution for the next value of the sequence:

f : {0, 1}Q × RQ → RC ,

where the C output values can be either probabilities, or as we will prefer, logits.

This can be generalized beyond categorical distributions by mapping to
parameters of any distribution.

François Fleuret Deep learning / 10.1. Auto-regression 3 / 25

In what follows, we will consider only finite distributions over C real values.

Hence we can model a conditional distribution with a mapping that maps a pair
mask / known values to a distribution for the next value of the sequence:

f : {0, 1}Q × RQ → RC ,

where the C output values can be either probabilities, or as we will prefer, logits.

This can be generalized beyond categorical distributions by mapping to
parameters of any distribution.

François Fleuret Deep learning / 10.1. Auto-regression 3 / 25

Given such a model and a sampling procedure sample, the generative process
for a full sequence is

x1 ← sample (f ({}))
x2 ← sample (f ({X1 = x1}))
x3 ← sample (f ({X1 = x1,X2 = x2}))

. . .

xT ← sample (f ({X1 = x1,X2 = x2, . . . ,XT−1 = xT−1}))

François Fleuret Deep learning / 10.1. Auto-regression 4 / 25

For instance, with C = 3 and T = 5, we could have:

{}

[[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]]

Mask and values

[0.1, 0.5, 0.4]

Distribution

f
2

sample

{X1 = 2} [[1, 0, 0, 0, 0]
[2, 0, 0, 0, 0]]

[0.6, 0.2, 0.2]
f

1
sample

{X1 = 2, X2 = 1} [[1, 1, 0, 0, 0]
[2, 1, 0, 0, 0]]

[0.1, 0.0, 0.9]
f

2
sample

{X1 = 2, X2 = 1, X3 = 2} [[1, 1, 1, 0, 0]
[2, 1, 2, 0, 0]]

[0.5, 0.2, 0.3] . . .
f sample

François Fleuret Deep learning / 10.1. Auto-regression 5 / 25

For instance, with C = 3 and T = 5, we could have:

{} [[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]]

Mask and values

[0.1, 0.5, 0.4]

Distribution

f
2

sample

{X1 = 2} [[1, 0, 0, 0, 0]
[2, 0, 0, 0, 0]]

[0.6, 0.2, 0.2]
f

1
sample

{X1 = 2, X2 = 1} [[1, 1, 0, 0, 0]
[2, 1, 0, 0, 0]]

[0.1, 0.0, 0.9]
f

2
sample

{X1 = 2, X2 = 1, X3 = 2} [[1, 1, 1, 0, 0]
[2, 1, 2, 0, 0]]

[0.5, 0.2, 0.3] . . .
f sample

François Fleuret Deep learning / 10.1. Auto-regression 5 / 25

For instance, with C = 3 and T = 5, we could have:

{} [[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]]

Mask and values

[0.1, 0.5, 0.4]

Distribution

f

2
sample

{X1 = 2} [[1, 0, 0, 0, 0]
[2, 0, 0, 0, 0]]

[0.6, 0.2, 0.2]
f

1
sample

{X1 = 2, X2 = 1} [[1, 1, 0, 0, 0]
[2, 1, 0, 0, 0]]

[0.1, 0.0, 0.9]
f

2
sample

{X1 = 2, X2 = 1, X3 = 2} [[1, 1, 1, 0, 0]
[2, 1, 2, 0, 0]]

[0.5, 0.2, 0.3] . . .
f sample

François Fleuret Deep learning / 10.1. Auto-regression 5 / 25

For instance, with C = 3 and T = 5, we could have:

{} [[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]]

Mask and values

[0.1, 0.5, 0.4]

Distribution

f
2

sample

{X1 = 2} [[1, 0, 0, 0, 0]
[2, 0, 0, 0, 0]]

[0.6, 0.2, 0.2]
f

1
sample

{X1 = 2, X2 = 1} [[1, 1, 0, 0, 0]
[2, 1, 0, 0, 0]]

[0.1, 0.0, 0.9]
f

2
sample

{X1 = 2, X2 = 1, X3 = 2} [[1, 1, 1, 0, 0]
[2, 1, 2, 0, 0]]

[0.5, 0.2, 0.3] . . .
f sample

François Fleuret Deep learning / 10.1. Auto-regression 5 / 25

For instance, with C = 3 and T = 5, we could have:

{} [[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]]

Mask and values

[0.1, 0.5, 0.4]

Distribution

f
2

sample

{X1 = 2}

[[1, 0, 0, 0, 0]
[2, 0, 0, 0, 0]]

[0.6, 0.2, 0.2]
f

1
sample

{X1 = 2, X2 = 1} [[1, 1, 0, 0, 0]
[2, 1, 0, 0, 0]]

[0.1, 0.0, 0.9]
f

2
sample

{X1 = 2, X2 = 1, X3 = 2} [[1, 1, 1, 0, 0]
[2, 1, 2, 0, 0]]

[0.5, 0.2, 0.3] . . .
f sample

François Fleuret Deep learning / 10.1. Auto-regression 5 / 25

For instance, with C = 3 and T = 5, we could have:

{} [[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]]

Mask and values

[0.1, 0.5, 0.4]

Distribution

f
2

sample

{X1 = 2} [[1, 0, 0, 0, 0]
[2, 0, 0, 0, 0]]

[0.6, 0.2, 0.2]
f

1
sample

{X1 = 2, X2 = 1} [[1, 1, 0, 0, 0]
[2, 1, 0, 0, 0]]

[0.1, 0.0, 0.9]
f

2
sample

{X1 = 2, X2 = 1, X3 = 2} [[1, 1, 1, 0, 0]
[2, 1, 2, 0, 0]]

[0.5, 0.2, 0.3] . . .
f sample

François Fleuret Deep learning / 10.1. Auto-regression 5 / 25

For instance, with C = 3 and T = 5, we could have:

{} [[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]]

Mask and values

[0.1, 0.5, 0.4]

Distribution

f
2

sample

{X1 = 2} [[1, 0, 0, 0, 0]
[2, 0, 0, 0, 0]]

[0.6, 0.2, 0.2]
f

1
sample

{X1 = 2, X2 = 1} [[1, 1, 0, 0, 0]
[2, 1, 0, 0, 0]]

[0.1, 0.0, 0.9]
f

2
sample

{X1 = 2, X2 = 1, X3 = 2} [[1, 1, 1, 0, 0]
[2, 1, 2, 0, 0]]

[0.5, 0.2, 0.3] . . .
f sample

François Fleuret Deep learning / 10.1. Auto-regression 5 / 25

For instance, with C = 3 and T = 5, we could have:

{} [[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]]

Mask and values

[0.1, 0.5, 0.4]

Distribution

f
2

sample

{X1 = 2} [[1, 0, 0, 0, 0]
[2, 0, 0, 0, 0]]

[0.6, 0.2, 0.2]
f

1
sample

{X1 = 2, X2 = 1} [[1, 1, 0, 0, 0]
[2, 1, 0, 0, 0]]

[0.1, 0.0, 0.9]
f

2
sample

{X1 = 2, X2 = 1, X3 = 2} [[1, 1, 1, 0, 0]
[2, 1, 2, 0, 0]]

[0.5, 0.2, 0.3] . . .
f sample

François Fleuret Deep learning / 10.1. Auto-regression 5 / 25

For instance, with C = 3 and T = 5, we could have:

{} [[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]]

Mask and values

[0.1, 0.5, 0.4]

Distribution

f
2

sample

{X1 = 2} [[1, 0, 0, 0, 0]
[2, 0, 0, 0, 0]]

[0.6, 0.2, 0.2]
f

1
sample

{X1 = 2, X2 = 1}

[[1, 1, 0, 0, 0]
[2, 1, 0, 0, 0]]

[0.1, 0.0, 0.9]
f

2
sample

{X1 = 2, X2 = 1, X3 = 2} [[1, 1, 1, 0, 0]
[2, 1, 2, 0, 0]]

[0.5, 0.2, 0.3] . . .
f sample

François Fleuret Deep learning / 10.1. Auto-regression 5 / 25

For instance, with C = 3 and T = 5, we could have:

{} [[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]]

Mask and values

[0.1, 0.5, 0.4]

Distribution

f
2

sample

{X1 = 2} [[1, 0, 0, 0, 0]
[2, 0, 0, 0, 0]]

[0.6, 0.2, 0.2]
f

1
sample

{X1 = 2, X2 = 1} [[1, 1, 0, 0, 0]
[2, 1, 0, 0, 0]]

[0.1, 0.0, 0.9]
f

2
sample

{X1 = 2, X2 = 1, X3 = 2} [[1, 1, 1, 0, 0]
[2, 1, 2, 0, 0]]

[0.5, 0.2, 0.3] . . .
f sample

François Fleuret Deep learning / 10.1. Auto-regression 5 / 25

For instance, with C = 3 and T = 5, we could have:

{} [[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]]

Mask and values

[0.1, 0.5, 0.4]

Distribution

f
2

sample

{X1 = 2} [[1, 0, 0, 0, 0]
[2, 0, 0, 0, 0]]

[0.6, 0.2, 0.2]
f

1
sample

{X1 = 2, X2 = 1} [[1, 1, 0, 0, 0]
[2, 1, 0, 0, 0]]

[0.1, 0.0, 0.9]
f

2
sample

{X1 = 2, X2 = 1, X3 = 2}

[[1, 1, 1, 0, 0]
[2, 1, 2, 0, 0]]

[0.5, 0.2, 0.3] . . .
f sample

François Fleuret Deep learning / 10.1. Auto-regression 5 / 25

For instance, with C = 3 and T = 5, we could have:

{} [[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]]

Mask and values

[0.1, 0.5, 0.4]

Distribution

f
2

sample

{X1 = 2} [[1, 0, 0, 0, 0]
[2, 0, 0, 0, 0]]

[0.6, 0.2, 0.2]
f

1
sample

{X1 = 2, X2 = 1} [[1, 1, 0, 0, 0]
[2, 1, 0, 0, 0]]

[0.1, 0.0, 0.9]
f

2
sample

{X1 = 2, X2 = 1, X3 = 2} [[1, 1, 1, 0, 0]
[2, 1, 2, 0, 0]]

[0.5, 0.2, 0.3] . . .
f sample

François Fleuret Deep learning / 10.1. Auto-regression 5 / 25

The package torch.distributions provides the necessary tools to sample
from a variety of distributions.

>>> l = torch.tensor([log(0.8), log(0.1), log(0.1)])
>>> dist = torch.distributions.categorical.Categorical(logits = l)
>>> s = dist.sample((10000,))
>>> (s.view(-1, 1) == torch.arange(3).view(1, -1)).float().mean(0)
tensor([0.8037, 0.0988, 0.0975])

Sampling can also be done in batch

>>> l = torch.tensor([[log(0.90), log(0.10)],
... [log(0.50), log(0.50)],
... [log(0.25), log(0.75)],
... [log(0.01), log(0.99)]])
>>> dist = torch.distributions.categorical.Categorical(logits = l)
>>> dist.sample((8,))
tensor([[0, 1, 1, 1],

[0, 1, 1, 1],
[0, 0, 1, 1],
[0, 1, 0, 1],
[1, 0, 1, 1],
[0, 1, 1, 1],
[0, 1, 1, 1],
[0, 0, 1, 1]])

François Fleuret Deep learning / 10.1. Auto-regression 6 / 25

The package torch.distributions provides the necessary tools to sample
from a variety of distributions.

>>> l = torch.tensor([log(0.8), log(0.1), log(0.1)])
>>> dist = torch.distributions.categorical.Categorical(logits = l)
>>> s = dist.sample((10000,))
>>> (s.view(-1, 1) == torch.arange(3).view(1, -1)).float().mean(0)
tensor([0.8037, 0.0988, 0.0975])

Sampling can also be done in batch

>>> l = torch.tensor([[log(0.90), log(0.10)],
... [log(0.50), log(0.50)],
... [log(0.25), log(0.75)],
... [log(0.01), log(0.99)]])
>>> dist = torch.distributions.categorical.Categorical(logits = l)
>>> dist.sample((8,))
tensor([[0, 1, 1, 1],

[0, 1, 1, 1],
[0, 0, 1, 1],
[0, 1, 0, 1],
[1, 0, 1, 1],
[0, 1, 1, 1],
[0, 1, 1, 1],
[0, 0, 1, 1]])

François Fleuret Deep learning / 10.1. Auto-regression 6 / 25

With a finite distribution and the output values interpreted as logits, training
consists of maximizing the likelihood of the training samples, hence minimizing

ℒ (f) = −
∑
n

∑
t

log p̂(Xt = xn,t | X1 = xn,1, . . . ,Xt−1 = xn,t−1)

=
∑
n

∑
t

𝓁
(
f ((1, . . . , 1, 0, . . . , 0), (xn,1, . . . , xn,t−1, 0, . . . , 0)), xn,t

)
where 𝓁 is the cross-entropy.

François Fleuret Deep learning / 10.1. Auto-regression 7 / 25

In practice, for each batch, we sample a position to predict for each sample at
random, from which we build the masks, conditioning values, and target values.

[[3, 1, 8, 1, 0, 3],
[2, 3, 0, 9, 6, 5],
[7, 1, 5, 7, 3, 1],
[6, 0, 2, 3, 1, 9]]

Training Sequences

François Fleuret Deep learning / 10.1. Auto-regression 8 / 25

In practice, for each batch, we sample a position to predict for each sample at
random, from which we build the masks, conditioning values, and target values.

[[3, 1, 8, 1, 0, 3],
[2, 3, 0, 9, 6, 5],
[7, 1, 5, 7, 3, 1],
[6, 0, 2, 3, 1, 9]]

Training Sequences

François Fleuret Deep learning / 10.1. Auto-regression 8 / 25

In practice, for each batch, we sample a position to predict for each sample at
random, from which we build the masks, conditioning values, and target values.

[[3, 1, 8, 1, 0, 3],
[2, 3, 0, 9, 6, 5],
[7, 1, 5, 7, 3, 1],
[6, 0, 2, 3, 1, 9]]

Training Sequences

[[1, 1, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 0],
[1, 1, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0]]

Input (masks)

[[3, 1, 0, 0, 0, 0],
[2, 3, 0, 9, 6, 0],
[7, 1, 5, 0, 0, 0],
[6, 0, 0, 0, 0, 0]]

Input (values)

François Fleuret Deep learning / 10.1. Auto-regression 8 / 25

In practice, for each batch, we sample a position to predict for each sample at
random, from which we build the masks, conditioning values, and target values.

[[3, 1, 8, 1, 0, 3],
[2, 3, 0, 9, 6, 5],
[7, 1, 5, 7, 3, 1],
[6, 0, 2, 3, 1, 9]]

Training Sequences

[[1, 1, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 0],
[1, 1, 1, 0, 0, 0],
[1, 0, 0, 0, 0, 0]]

Input (masks)

[[3, 1, 0, 0, 0, 0],
[2, 3, 0, 9, 6, 0],
[7, 1, 5, 0, 0, 0],
[6, 0, 0, 0, 0, 0]]

Input (values)

[8,
5,
7,
0]

Targets

François Fleuret Deep learning / 10.1. Auto-regression 8 / 25

Consider a toy problem, where sequences from {1, . . . ,C}T are split in two at a
random position, and are linear in both parts, with slopes ∼ 𝒰 ([−1, 1]).

∼ 𝒰 ({1, . . . ,T})

T

C = 2T

Values are re-centered and discretized into 2T values.

François Fleuret Deep learning / 10.1. Auto-regression 9 / 25

Some train sequences

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

François Fleuret Deep learning / 10.1. Auto-regression 10 / 25

Model

class Net(nn.Module):
def __init__(self, nb_values):

super().__init__()

self.features = nn.Sequential(
nn.Conv1d(2, 32, kernel_size = 5),
nn.ReLU(),
nn.MaxPool1d(2),
nn.Conv1d(32, 64, kernel_size = 5),
nn.ReLU(),
nn.MaxPool1d(2),
nn.ReLU(),

)

self.fc = nn.Sequential(
nn.Linear(320, 200),
nn.ReLU(),
nn.Linear(200, nb_values)

)

def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x

François Fleuret Deep learning / 10.1. Auto-regression 11 / 25

Training loop

for sequences in train_sequences.split(batch_size):
nb = sequences.size(0)

Select a random index in each sequence, this is our targets
idx = torch.randint(len, (nb, 1), device = sequences.device)
targets = sequences.gather(1, idx).view(-1)

Create masks and values accordingly
tics = torch.arange(len, device = sequences.device).view(1, -1).expand(nb, -1)
masks = (tics < idx.expand(-1, len)).float()
values = (sequences.float() - mean) / std * masks

Make masks and values one-channel and concatenate them along
channels to make the input
input = torch.cat((masks.unsqueeze(1), values.unsqueeze(1)), 1)

Compute the loss and make the gradient step
output = model(input)
loss = cross_entropy(output, targets)

optimizer.zero_grad()
loss.backward()
optimizer.step()

François Fleuret Deep learning / 10.1. Auto-regression 12 / 25

Synthesis

nb = 25
generated = torch.zeros(nb, len, device = device, dtype = torch.int64)
tics = torch.arange(len, device = device).view(1, -1).expand(nb, -1)

for t in range(len):
masks = (tics < t).float()
values = (generated.float() - mean) / std * masks
input = torch.cat((masks.unsqueeze(1), values.unsqueeze(1)), 1)
output = model(input)
dist = torch.distributions.categorical.Categorical(logits = output)
generated[:, t] = dist.sample()

François Fleuret Deep learning / 10.1. Auto-regression 13 / 25

Some generated sequences

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

François Fleuret Deep learning / 10.1. Auto-regression 14 / 25

Image auto-regression

François Fleuret Deep learning / 10.1. Auto-regression 15 / 25

The exact same auto-regressive approach generalizes to any tensor shape, as
long as a visiting order of the coefficients is provided.

For instance, for images, we can visit pixels in the “raster scan order”
corresponding to the standard mapping in memory, top-to-bottom, left-to-right.

image_masks = torch.empty(16, 1, 6, 6)
for k in range(image_masks.size(0)):

sequence_mask = torch.arange(1 * 6 * 6) < k
image_masks[k] = sequence_mask.float().view(1, 6, 6)

François Fleuret Deep learning / 10.1. Auto-regression 16 / 25

Some of the MNIST train images

François Fleuret Deep learning / 10.1. Auto-regression 17 / 25

We define two functions to serialize the image tensors into sequences

def seq2tensor(s):
return s.reshape(-1, 1, 28, 28)

def tensor2seq(s):
return s.reshape(-1, 28 * 28)

François Fleuret Deep learning / 10.1. Auto-regression 18 / 25

Model

class LeNetMNIST(nn.Module):
def __init__(self, nb_classes):

super().__init__()

self.features = nn.Sequential(
nn.Conv2d(2, 32, kernel_size = 3),
nn.MaxPool2d(kernel_size = 2),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size = 5),
nn.ReLU(),

)

self.fc = nn.Sequential(
nn.Linear(64 * 81, 512),
nn.ReLU(),
nn.Linear(512, nb_classes)

)

def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x

François Fleuret Deep learning / 10.1. Auto-regression 19 / 25

Training loop

for data in train_input.split(args.batch_size):
Make 1d sequences from the images
sequences = tensor2seq(data)
nb, len = sequences.size(0), sequences.size(1)

Select a random index in each sequence, this is our targets
idx = torch.randint(len, (nb, 1), device = device)
targets = sequences.gather(1, idx).view(-1)

Create masks and values accordingly
tics = torch.arange(len, device = device).view(1, -1).expand(nb, -1)
masks = seq2tensor((tics < idx.expand(-1, len)).float())
values = (data.float() - mu) / std * masks

Make the input, set the mask and values as two channels
input = torch.cat((masks, values), 1)

Compute the loss and make the gradient step
output = model(input)
loss = cross_entropy(output, targets)

optimizer.zero_grad()
loss.backward()
optimizer.step()

François Fleuret Deep learning / 10.1. Auto-regression 20 / 25

Synthesis

nb = 48
generated = torch.zeros((nb,) + train_input.shape[1:],

device = device, dtype = torch.int64)
sequences = tensor2seq(generated)
tics = torch.arange(sequences.size(1), device = device).view(1, -1).expand(nb, -1)

for t in range(sequences.size(1)):
masks = seq2tensor((tics < t).float())
values = (seq2tensor(sequences).float() - mu) / std * masks
input = torch.cat((masks, values), 1)
output = model(input)
dist = torch.distributions.categorical.Categorical(logits = output)
sequences[:, t] = dist.sample()

François Fleuret Deep learning / 10.1. Auto-regression 21 / 25

Some generated images

François Fleuret Deep learning / 10.1. Auto-regression 22 / 25

Masks, generated pixels so far, and posterior on the next pixel to generate (red
dot), as predicted by the model (logscale). White is 0 and black is 255.

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

François Fleuret Deep learning / 10.1. Auto-regression 23 / 25

The same generative process can be used for in-painting, by starting the process
with available pixel values.

Original Input Several synthesis

François Fleuret Deep learning / 10.1. Auto-regression 24 / 25

Some remarks:

• The index ordering for the sampling is a design decision. It can be fixed
during train and test, or be adaptive.

• Even when there is a clear metric structure on the value space, best results
are obtained with cross-entropy over a discretization of it.

This is due in large part to the ability of categorical distributions and
cross-entropy to deal with exotic posteriors, in particular multi-modal.

• The cross entropy for a sample is 𝓁n = − log p̂(yn) hence e𝓁n = 1
p̂(yn)

.

If the predicted posterior was uniform on N values, this loss value would
correspond to N = e𝓁n . This is the perplexity and is often monitored as a
more intuitive quantity.

François Fleuret Deep learning / 10.1. Auto-regression 25 / 25

Some remarks:

• The index ordering for the sampling is a design decision. It can be fixed
during train and test, or be adaptive.

• Even when there is a clear metric structure on the value space, best results
are obtained with cross-entropy over a discretization of it.

This is due in large part to the ability of categorical distributions and
cross-entropy to deal with exotic posteriors, in particular multi-modal.

• The cross entropy for a sample is 𝓁n = − log p̂(yn) hence e𝓁n = 1
p̂(yn)

.

If the predicted posterior was uniform on N values, this loss value would
correspond to N = e𝓁n . This is the perplexity and is often monitored as a
more intuitive quantity.

François Fleuret Deep learning / 10.1. Auto-regression 25 / 25

Some remarks:

• The index ordering for the sampling is a design decision. It can be fixed
during train and test, or be adaptive.

• Even when there is a clear metric structure on the value space, best results
are obtained with cross-entropy over a discretization of it.

This is due in large part to the ability of categorical distributions and
cross-entropy to deal with exotic posteriors, in particular multi-modal.

• The cross entropy for a sample is 𝓁n = − log p̂(yn) hence e𝓁n = 1
p̂(yn)

.

If the predicted posterior was uniform on N values, this loss value would
correspond to N = e𝓁n . This is the perplexity and is often monitored as a
more intuitive quantity.

François Fleuret Deep learning / 10.1. Auto-regression 25 / 25

The end

References

H. Larochelle and I. Murray. The neural autoregressive distribution estimator. In
International Conference on Artificial Intelligence and Statistics (AISTATS), pages
29–37, 2011.

	Image auto-regression
	References

