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A tensor is a generalized matrix, a finite table of numerical values indexed along
several discrete dimensions.

• A 0d tensor is a scalar,

• A 1d tensor is a vector (e.g. a sound sample),

• A 2d tensor is a matrix (e.g. a grayscale image),

• A 3d tensor can be seen as a vector of identically sized matrix (e.g. a
multi-channel image),

• A 4d tensor can be seen as a matrix of identically sized matrices, or a
sequence of 3d tensors (e.g. a sequence of multi-channel images),

• etc.

Tensors are used to encode the signal to process, but also the internal states
and parameters of models. Compounded data structures can represent more
diverse data types.

Manipulating data through this constrained structure allows to use CPUs and
GPUs at [near] peak performance.
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!
The “dimension” of a vector in linear algebra is its number of coefficients,
while the “dimension” of a tensor is the number of indices to specify
one of its coefficients.

E.g. an element of R3 is a three-dimension vector, but a one-dimension tensor.
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PyTorch’s main features are:

• Efficient tensor operations on CPU/GPU,

• automatic on-the-fly differentiation (autograd),

• optimizers,

• data I/O.

“Efficient tensor operations” encompass both standard linear algebra and, as we
will see later, deep-learning specific operations (convolution, pooling, etc.)

A key specificity of PyTorch is the central role of autograd to compute
derivatives of anything ! We will come back to this.
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>>> x = torch.empty(2, 5)
>>> x.size()
torch.Size([2, 5])
>>> x.fill_(1.125)
tensor([[ 1.1250, 1.1250, 1.1250, 1.1250, 1.1250],

[ 1.1250, 1.1250, 1.1250, 1.1250, 1.1250]])
>>> x.mean()
tensor(1.1250)
>>> x.std()
tensor(0.)
>>> x.sum()
tensor(11.2500)
>>> x.sum().item()
11.25

In-place operations are suffixed with an underscore, and a 0d tensor can be
converted back to a Python scalar with item().

! Reading a coefficient returns a 0d tensor.

>>> x = torch.tensor([[11., 12., 13.], [21., 22., 23.]])
>>> x[1, 2]
tensor(23.)
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PyTorch provides operators for component-wise and vector/matrix operations.

>>> x = torch.tensor([ 10., 20., 30.])
>>> y = torch.tensor([ 11., 21., 31.])
>>> x + y
tensor([ 21., 41., 61.])
>>> x * y
tensor([ 110., 420., 930.])
>>> x**2
tensor([ 100., 400., 900.])
>>> m = torch.tensor([[ 0., 0., 3. ],
... [ 0., 2., 0. ],
... [ 1., 0., 0. ]])
>>> m.mv(x)
tensor([ 90., 40., 10.])
>>> m @ x
tensor([ 90., 40., 10.])

François Fleuret Deep learning / 1.4. Tensor basics and linear regression 5 / 13



And as in NumPy, the : symbol defines a range of values for an index and
allows to slice tensors.

>>> import torch
>>> x = torch.randint(10, (2, 4))
>>> x
tensor([[8, 7, 6, 6],

[5, 0, 4, 8]])
>>> x[0]
tensor([8, 7, 6, 6])
>>> x[0, :]
tensor([8, 7, 6, 6])
>>> x[:, 0]
tensor([8, 5])
>>> x[:, 1:3] = -1
>>> x
tensor([[ 8, -1, -1, 6],

[ 5, -1, -1, 8]])
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PyTorch provides interfacing to standard linear operations, such as linear system
solving or eigen-decomposition.

>>> y = torch.randn(3)
>>> y
tensor([ 1.3663, -0.5444, -1.7488])
>>> m = torch.randn(3, 3)
>>> q = torch.linalg.lstsq(m, y).solution
>>> m@q
tensor([ 1.3663, -0.5444, -1.7488])
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Example: linear regression
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Given a list of points

(xn, yn) ∈ R× R, n = 1, . . . ,N,

can we find the affine function

f (x ; a, b) = ax + b

that “goes best through the points”

, e.g. minimizes the mean square error

argmin
a,b

1

N

N∑
n=1

(
axn + b︸ ︷︷ ︸
f (xn ;a,b)

−yn
)2
.

Such a model would allow to predict the y associated to a new x , simply by
calculating f (x ; a, b).
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bash> cat systolic-blood-pressure-vs-age.dat
39 144
47 220
45 138
47 145
65 162
46 142
67 170
42 124
67 158
56 154
64 162
56 150
59 140
34 110
42 128
/.../
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
x1 y1
x2 y2
...

...
xN yN


︸ ︷︷ ︸

data∈RN×2


x1 1.0
x2 1.0
...

...
xN 1.0


︸ ︷︷ ︸

x∈RN×2

(
a
b

)
︸ ︷︷ ︸
α∈R2×1

≃


y1
y2
...
yN


︸ ︷︷ ︸
y∈RN×1

import torch, numpy

data = torch.tensor(numpy.loadtxt('systolic-blood-pressure-vs-age.dat'))
nb_samples = data.size(0)

x, y = torch.empty(nb_samples, 2), torch.empty(nb_samples, 1)

x[:, 0] = data[:, 0]
x[:, 1] = 1

y[:, 0] = data[:, 1]

alpha = torch.linalg.lstsq(x, y).solution

a, b = alpha[0, 0].item(), alpha[1, 0].item()
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The end


	Example: linear regression

