Deep learning

8.2. Networks for image classification

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE

https://fleuret.org/dlc/

Standard convnets

Frangois Fleuret Deep learning / 8.2. Networks for image classification 1/36

The standard model for image classification are the LeNet family (LeCun et al.,
1989, 1998), and its modern variants such as AlexNet (Krizhevsky et al., 2012)
and VGGNet (Simonyan and Zisserman, 2014).

They share a common structure of several convolutional layers seen as a feature
extractor, followed by fully connected layers seen as a classifier.

The performance of AlexNet was a wake-up call for the computer vision
community, as it vastly out-performed other methods in spite of its simplicity.

Recent advances rely on moving from standard convolutional layers to more
complex local architectures to reduce the model size.

Frangois Fleuret Deep learning / 8.2. Networks for image classification 2/36

Frangois Fleuret

torchvision.models provides a collection of reference networks for computer
vision, e.g.:

import torchvision
alexnet = torchvision.models.alexnet ()

The trained models can be obtained by passing here weights =
»IMAGENET1K_V1’ to the constructor(s). This may involve an heavy download
given there size.

The networks from PyTorch listed in the coming slides may differ slightly
from the reference papers which introduced them historically.

Deep learning / 8.2. Networks for image classification 3/36

LeNet5 (LeCun et al., 1989). 10 classes, input 1 x 28 x 28.

(features): Sequential (

0):
(1):
(2):
(3):
(4):
(5):

)

Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))

ReLU (inplace)

MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))

ReLU (inplace)

MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

(classifier): Sequential (

(0): Linear (256 -> 120)
(1): RelLU (inplace)
(2): Linear (120 -> 84)
(3): RelLU (dinplace)
(4): Linear (84 -> 10)
)
Francois Fleuret Deep learning / 8.2. Networks for image classification 4 /36
Notes

Although debatable, a LeNet5 can be seen as a
“feature extractor” consisting of several convo-
lution layers, and a classifier made of fully con-
nected layers, that is formally a standard multi-
layer perceptron.

Alexnet (Krizhevsky et al., 2012). 1,000 classes, input 3 x 224 x 224,

(features): Sequential (

0):
(1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):
(9):
(10):
(11):
(12):
)

Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
ReLU (inplace)
MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
Conv2d (64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
ReLU (inplace)
MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
Conv2d (192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d (384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU (inplace)
MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

(classifier): Sequential (

(0): Dropout (p = 0.5)
(1): Linear (9216 -> 4096)
(2): RelLU (dinplace)
(3): Dropout (p = 0.5)
(4): Linear (4096 -> 4096)
(5): RelLU (dinplace)
(6): Linear (4096 -> 1000)
)
Francois Fleuret Deep learning / 8.2. Networks for image classification
Notes

AlexNet is very similar to LeNet5 with a few
differences: the input image is of size 224 x 224,
and the initial filters are big (11 x 11) which is

rather usual

nowadays.

The classifier part contains 60 million parameters
in the three linear layers. This AlexNet here
outputs 1,000 values because it was trained on

ImageNet.

5/ 36

Krizhevsky et al. used data augmentation during training to reduce over-fitting.

They generated 2,048 samples from every original training example through two classes
of transformations:

e crop a 224 x 224 image at a random position in the original 256 x 256, and
randomly reflect it horizontally,

e apply a color transformation using a PCA model of the color distribution.

During test the prediction is averaged over five random crops and their horizontal
reflections.

Francois Fleuret Deep learning / 8.2. Networks for image classification 6 /36

VGGNetl9 (Simonyan and Zisserman, 2014). 1,000 classes, input 3 x 224 x 224, 16

convolutional layers 4 3 fully connected layers.

(features): Sequential (

(0):
(1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):
9):

(10):
(11):
(12):
(13):
(14):
(15):
(16):
(17):
(18):
(19):
(20):
(21):
(22):
(23):
(24):
(25):
(26):
27):

/.o

Francois Fleuret

Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU (inplace)

Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU (inplace)

MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
Conv2d (64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU (inplace)

Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU (inplace)

MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

ReLU (inplace)

Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

ReLU (inplace)

Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

ReLU (inplace)

Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

ReLU (inplace)

MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
Conv2d (256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1,

ReLU (inplace)

Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1,

ReLU (inplace)

Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1,

ReLU (inplace)

Conv2d (512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1,

ReLU (inplace)

MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))

Deep learning / 8.2. Networks for image classification

1)

1)

1)

1)

1))

1))

1))

1))

Notes

The VGG family of networks are bigger than
LeNet and AlexNet. The main pattern is a series
of several (between two and four) convolutional
and RelLU layers, followed by a MaxPool to reduce
the size of the signal.
The filters are all 3 x 3, which is way smaller
than in AlexNet.

7/ 36

VGGNet19 (cont.)

(classifier): Sequential (

(0):
GDE
(2):
(3):
(4):
(5):
(8):

Francois Fleuret

Linear (25088 -> 4096)
ReLU (inplace)

Dropout (p = 0.5)
Linear (4096 -> 4096)
ReLU (inplace)

Dropout (p = 0.5)
Linear (4096 -> 1000)

Deep learning / 8.2. Networks for image classification

Notes

The classifier of VGG is bigger than the one of
AlexNet, with 120 million parameters.

8/ 36

We can illustrate the convenience of these pre-trained models on a simple
image-classification problem.

To be sure this picture did not appear in the training data, it was not taken from the
web.

Francois Fleuret Deep learning / 8.2. Networks for image classification 9/36

import PIL, torch, torchvision

Load and normalize the image

to_tensor = torchvision.transforms.ToTensor ()

img = to_tensor(PIL.Image.open('../example_images/blacklab.jpg'))
img = img.unsqueeze(0)

img = 0.5 + 0.5 * (img - img.mean()) / img.std()

Load and evaluate the network
alexnet = torchvision.models.alexnet(weights = 'IMAGENET1K_V1')
alexnet.eval()

output = alexnet(img)

Prints the classes
scores, indexes = output.view(-1).sort(descending = True)

class_names = eval(open('imagenet1000_clsid_to_human.txt', 'r').read())

for k in range(12):
print (f'#{k+1} {scores[k].item():.02f} {class_names[indexes[k].item()]}"')

Francois Fleuret Deep learning / 8.2. Networks for image classification 10 / 36

Notes

Remember that PyTorch models expect as input
a batch of samples. To apply a model on a
single RGB image, the input should be of size
1 x 3 xX H x W, hence the img.unsqueeze (0)
that adds a new dimension to the tensor.

The model is put in “eval” mode because of the
dropout layers.

The output is of shape 1 x 1000, corresponding
to one score for each class of ImageNet.

The remaining of the code ranks the output by
descending order, and prints the top fifteen values
and corresponding class names.

12.26 Weimaraner

10.95 Chesapeake Bay retriever

10.87 Labrador retriever

10.10 Staffordshire bullterrier, Staffordshire bull terrier
.55 flat-coated retriever

.40 Italian greyhound

31 American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier
.12 Great Dane

.94 German short-haired pointer

.53 Doberman, Doberman pinscher

.35 Rottweiler

.25 kelpie

.24 barrow, garden cart, lawn cart, wheelbarrow

.12 bucket, pail

.07 soccer ball

0 0 00 0 0 0 0 O W ©W ©

BT o

Weimaraner Chesapeake Bay retriever

Francois Fleuret Deep learning / 8.2. Networks for image classification 11/ 36

Notes

The top three results correspond to dog breeds
very similar to the one on the original image.
Despite some bizarre results with quite high scores
down the rankings, these results show how con-
venient it has become to be able to download
and use with few lines of code a large-scale deep
model.

Fully convolutional networks

Frangois Fleuret Deep learning / 8.2. Networks for image classification 12 /36

Standard convolutional networks reshape the tensor x() produced by the “feature
extractor” composed of convolutional layers into a 1d tensor, before feeding it to the
series of fully connected layers that compose the “classifier” part of the model.

The output of every fully connected layer from there is a 1d tensor, and it is computed

by taking the dot product between the 2d input tensor to the layer and the 1d weight
vectors corresponding to the weight matrix rows.

}W(/+2)

Reshape

L(142)

x(x(+1)

Francois Fleuret Deep learning / 8.2. Networks for image classification 13/ 36

Instead of reshaping the input tensor we can instead replace the fully connected layers
by convolution layers whose filters are as big as the input tensor, hence computing a
single activation per filter.

wl+1)

FH o) G

(141 L (1+2)

x()

Francois Fleuret Deep learning / 8.2. Networks for image classification 14 / 36

This “convolutionization” does not change anything if the input size is such that the
output has a single spatial cell, however when the input is larger, it fully re-uses
computation to get a prediction at multiple locations.

w(l+1)

® ®) /wee

K (1+1) «(142)

Francois Fleuret Deep learning / 8.2. Networks for image classification 15 / 36

Notes

The convolutionized version of a fully connected
network re-uses computation of early layers to do
the computation of the classifier:

With the standard version of the AlexNet, if one
wants to apply the network at multiple locations
of a large image, it should be done in a sliding
window fashion: Each position would be pro-
cessed separately, and no computation would be
shared. With the fully convolutional version, the
computation of the early layers is performed only
once at each location, and the classifier part re-
ceives an activation map which can be used by
the convolutional filters.

We can write a routine that transforms a series of layers from a standard convnets to

make it fully convolutional:

def convolutionize(layers, input_size):
result_layers = []
x = torch.zeros((1,) + input_size)

for m in layers:
if isinstance(m, torch.nn.Linear):
n = torch.nn.Conv2d(in_channels = x.size(1),

out_channels = m.weight.size(0),
kernel_size = (x.size(2), x.size(3)))

with torch.no_grad():
n.weight.view(-1).copy_(m.weight.view(-1))
n.bias.view(-1).copy_(m.bias.view(-1))
m=n

result_layers.append (m)
x = m(x)

return result_layers

This function makes the [strong and disputable] assumption that only
nn.Linear has to be converted.

Francois Fleuret Deep learning / 8.2. Networks for image classification

Notes

In this convolutionize function, we forward a
dummy tensor into the network to compute the
shape of the tensors after each linear layer, and
reshape their weights accordingly. When the layer
is not nn.Linear, it is copied as is.

16 / 36

To apply this to AlexNet

model = torchvision.models.alexnet(weights = 'IMAGENET1K_V1')
print (model)

layers = list(model.features) + list(model.classifier)

model = nn.Sequential (*convolutionize(layers, (3, 224, 224)))
print (model)

Francois Fleuret Deep learning / 8.2. Networks for image classification 17 / 36

AlexNet (

(features): Sequential (

(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): RelLU (inplace)
(2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): RelU (inplace)
(5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): RelLU (inplace)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): RelU (inplace)
(10): Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12) : MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))

)

(classifier): Sequential (
(0): Dropout (p = 0.5)
(1): Linear (9216 -> 4096)
(2): RelLU (dinplace)
(3): Dropout (p = 0.5)
(4): Linear (4096 -> 4096)
(5): RelLU (inplace)
(6): Linear (4096 -> 1000)

)

)
Francois Fleuret Deep learning / 8.2. Networks for image classification
Notes

This is the structure of the standard AlexNet with
fully connected layers in the classifier part, the

Linear layers.

18 / 36

Sequential (

(0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
(1): RelLU (inplace)
(2): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(4): RelU (dinplace)
(5): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(6): Conv2d (192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): RelLU (dinplace)
(8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU (inplace)
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(11): ReLU (inplace)
(12): MaxPool2d (size=(3, 3), stride=(2, 2), dilation=(1, 1))
(13): Dropout (p = 0.5)
(14): Conv2d(256, 4096, kernel_size=(6, 6), stride=(1, 1))
(15): RelLU (inplace)
(16): Dropout (p = 0.5)
(17): Conv2d (4096, 4096, kernel_size=(1, 1), stride=(1, 1))
(18): RelLU (inplace)
(19): Conv2d (4096, 1000, kernel_size=(1, 1), stride=(1, 1))
)
Francois Fleuret Deep learning / 8.2. Networks for image classification
Notes

This is the convolutionized version of AlexNet
where the linear layers of the classifier have been
replaced by convolution layers.

19 /36

In their “overfeat” approach, Sermanet et al. (2013) combined this with a stride 1 final

max-pooling to get multiple predictions.

1000d 1000d
FC layers FC layers
Max-pooling Max-pooling
Conv layers Conv layers
Input image Input image
AlexNet random cropping Overfeat dense max-pooling

Doing so, they could afford parsing the scene at 6 scales to improve invariance.

Frangois Fleuret Deep learning / 8.2. Networks for image classification

Notes

On the left is the procedure used to run AlexNet
at multiple locations on the 256 x 256 input: the
full network is applied at several locations.

On the right is the “overfeat” version of AlexNet
which computes the convolution on the full image,
and only “move” the fully connected layers on
the output of the feature extractor.

The part of the network shown in red is the part
which needs to be computed when we want a
prediction at a given location. The black part
“conv layers” on the right is computed once for
all.

20/ 36

This “convolutionization” has a practical consequence, as we can now re-use
classification networks for dense prediction without re-training.

Also, and maybe more importantly, it blurs the conceptual boundary between “features”
and “classifier” and leads to an intuitive understanding of convnet activations as
gradually transitioning from appearance to semantic.

We will come back to this in lecture 9.2. “Looking at activations”.

Frangois Fleuret Deep learning / 8.2. Networks for image classification 21 / 36

In the case of a large output prediction map, a final prediction can be obtained by
averaging the final output map channel-wise.

If the last layer is linear, the averaging can be done first, as in the residual networks (He
et al., 2015).

Frangois Fleuret Deep learning / 8.2. Networks for image classification 22 / 36

Network in network

Francois Fleuret Deep learning / 8.2. Networks for image classification 23 / 36

Lin et al. (2013) re-interpreted a convolution filter as a one-layer perceptron, and
extended it with an “MLP convolution” (aka “network in network”) to improve the
capacity vs. parameter ratio.

(Lin et al., 2013)

As for the fully convolutional networks, such local MLPs can be implemented with 1 x 1
convolutions.

Frangois Fleuret Deep learning / 8.2. Networks for image classification 24 / 36

Frangois Fleuret

The same notion was generalized by Szegedy et al. (2015) for their GooglLeNet, through
the use of module combining convolutions at multiple scales to let the optimal ones be
picked during training.

Filter
Filter concatenation
concatenation ﬂ
I 3x3 { 5x5 i 1x1
1x1 i 3x3 i 5x5 i 3x3 max pooling Bl . 3 3 3
ﬂ(ions 1x1 convolutions 3x3 max pooling
P —
Previous layer Previous layer
(a) Inception module, naive version (b) Inception module with dimension reductions

(Szegedy et al., 2015)

Deep learning / 8.2. Networks for image classification 25 / 36

Szegedy et al. (2015) also introduce the idea of auxiliary classifiers to help the
propagation of the gradient in the early layers.

This is motivated by the reasonable performance of shallow networks that indicates early
layers already encode informative and invariant features.

Francois Fleuret Deep learning / 8.2. Networks for image classification 26 / 36

The resulting GooglLeNet has 12 times less parameters than AlexNet and is more
accurate on ILSVRC14 (Szegedy et al., 2015).

(Szegedy et al., 2015)

It was later extended with techniques we are going to see in the next slides:
batch-normalization (loffe and Szegedy, 2015) and pass-through a la resnet (Szegedy
et al., 2016).

Francois Fleuret Deep learning / 8.2. Networks for image classification 27 / 36

Residual networks

Francois Fleuret Deep learning / 8.2. Networks for image classification 28 / 36

We already saw the structure of the residual networks and how well they perform on

CIFARI10 (He et al., 2015).

The default residual block proposed by He et al. is of the form

64

Conv
3 X 3
64 — 64

Conv
— BN |-| ReLU —— 3 x 3
64 — 64

BN

RelU

64

and as such requires 2 x (3 x 3 x 64 + 1) x 64 ~ 73k parameters.

Francois Fleuret

Deep learning / 8.2. Networks for image classification

29 / 36

To apply the same architecture to ImageNet, more channels are required, e.g.

256

Conv
3 X3
256 — 256

—— BN |- ReLU

Conv

— 3 X3

256 — 256

B“

RelLU

256

However, such a block requires 2 x (3 x 3 x 256 + 1) x 256 ~ 1.2m parameters.

They mitigated that requirement with what they call a bottleneck block:

Conv

Francois Fleuret

1x1
256 256 — 64

BN |- ReLU [— 3 X 3 [|—

Conv

64 — 64

BN |- ReLU

Conv
1x1
64 — 256

BN

— + RelLU
256

256 X 64 + (3 x 3 x 64 + 1) X 64 + 64 x 256 ~ 70k parameters.

The encoding pushed between blocks is high-dimensional, but the “contextual
reasoning’ in convolutional layers is done on a simpler feature representation.

Deep learning / 8.2. Networks for image classification

30 / 36

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GooglLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

Frangois Fleuret Deep learning / 8.2. Networks for image classification

(He et al., 2015)

31/36

This was extended to the ResNeXt architecture by Xie et al. (2016), with blocks with
similar number of parameters, but split into 32 “aggregated” pathways.

Conv Conv Conv
— 1 x1 |— BN |4{ReLlU ——3 X3 |— BN [{ ReLU — 1 x 1 |— BN
256 — 4 44 4 — 256
LB AF ReLU |—— - - -
256 256
Conv Conv Conv
— 1 x1 |— BN |{ReLlU ——3 X3 |— BN [{ ReLU —— 1 x 1 |— BN
256 — 4 4—4 4 — 256

When equalizing the number of parameters, this architecture performs better than a
standard resnet.

Francois Fleuret Deep learning / 8.2. Networks for image classification 32 /36

Frangois Fleuret

Tan and Le (2019) proposed to scale depth, width, and resolutions uniformly when

increasing the size of a network.

84

[
2

se’
97 Xception

Imagenet Top 1 Accuracy (%)
1

-
AmoebaNe

.9
SENet

L27 NASNetA

.‘.-n"“
*" ResNeXt-101

AL
#°..*"" Inception-ResNet-v2

t-C

T I
78 (- eResNet-152 Topl Acc. #Params
1 ¢ ResNet-152 (He etal, 2016) | 778% 60M
; -DenseNet-201 EfficientNet-B1 788% 78M
B0 - ResNeXt-101 (Xie et al, 2017)| 80.9% SAM
76 [] EfficientNet-B3 81.1% 12M
| - ResNet-50 SENet (Hu et al., 2018) 827% 146M
IS NASNet-A (Zoph et al., 2018) | 82.7% 89M
I Srception-v2 EfficientNet-B4 82.6% 19M
~ ception-v GPipe (Huang ctal, 2018) | 843% 556M
™1 NASNetA EfficientNet-B7 844% 66M

'R Net-34 Not plotted
esNet-
0 20 40 60 80 100 120 140 160 180

Number of Parameters (Millions)

Figure 1. Model Size vs. ImageNet Accuracy. All numbers are
for single-crop, single-model. Our EfficientNets significantly out-
perform other ConvNets. In particular, EfficientNet-B7 achieves
new state-of-the-art 84.4% top-1 accuracy but being 8.4x smaller
and 6.1x faster than GPipe. EfficientNet-B1 is 7.6x smaller and
5.7x faster than ResNet-152. Details are in Table 2 and 4.

Deep learning / 8.2.

Networks for image classification

(Tan and Le, 2019)

Notes

To go from a given network to another one on a
more challenging data set, the main question is

how

to increase this model?
should we increase the number of layers?

should we increase the number of
channels?

should the resolution be increased?

should the stride be increased?

33/ 36

Summary

Francois Fleuret Deep learning / 8.2. Networks for image classification 34 /36

To summarize roughly the evolution of convnets for image classification:

e standard ones are extensions of LeNetb,

e everybody loves RelL U,

o state-of-the-art networks have 100s of channels and 10s of layers,
e they can (should?) be fully convolutional,

e pass-through connections allow deeper “residual” nets,

e bottleneck local structures reduce the number of parameters,

e aggregated pathways reduce the number of parameters.

Frangois Fleuret Deep learning / 8.2. Networks for image classification 35/ 36

Image classification networks

No recurrence

\ 4
Highway Net
(Srivastava et al., 2015)

No gating

Dense

pass-through

Wide ResNet
(Zagoruyko and Komodakis, 2016)

Frangois Fleuret

Overfeat
(Sermanet et al., 2013)

DenseNet
(Huang et al., 2016)

LeNet5
(LeCun et al., 1989)

\l/ Bigger + GPU

Deep hierarchical CNN
(Ciresan et al., 2012)

Bigger + ReLU
Fully + dropout

convolutional
AlexNet

(Krizhevsky et al., 2012)
MLPConv
Bigger +

small filters

Net in Net
(Lin et al., 2013)

~—

VGG Inception
modules
(Simonyan and Zisserman, 2014) v
GoogleNet
(Szegedy et al., 2015)
Batch
N Normalization
BN-Inception
L=~ (loffe and Szegedy, 2015)
ResNet

(He et al., 2015)

Aggregated
channels

K\,

ResNeXt Inception-ResNet
(Xie et al., 2016) (Szegedy et al., 2016)

Deep learning / 8.2. Networks for image classification

36 / 36

References

D.

K.

Y.

Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image
classification. CoRR, abs/1202.2745, 2012.

He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):

1735-1780, 1997.

. Huang, Z. Liu, K. Weinberger, and L. van der Maaten. Densely connected convolutional

networks. CoRR, abs/1608.06993, 2016.

. loffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. In International Conference on Machine Learning (ICML), 2015.

. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural

networks. In Neural Information Processing Systems (NIPS), 2012.

. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.

Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):
541-551, 1989.

LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

M. Lin, Q. Chen, and S. Yan. Network in network. CoRR, abs/1312.4400, 2013.

K.

R.
C.

C.

. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated

recognition, localization and detection using convolutional networks. CoRR, abs/1312.6229,
2013.

Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

Srivastava, K. Greff, and J. Schmidhuber. Highway networks. CoRR, abs/1505.00387, 2015.

Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

Szegedy, S. loffe, and V. Vanhoucke. Inception-v4, inception-resnet and the impact of residual
connections on learning. CoRR, abs/1602.07261, 2016.

M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks.

S.

S.

CoRR, abs/1905.11946, 2019.

Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated residual transformations for deep
neural networks. CoRR, abs/1611.05431.pdf, 2016.

Zagoruyko and N. Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.

	Standard convnets
	Fully convolutional networks
	Network in network
	Residual networks
	Summary
	References

