
Deep learning

6.6. Using GPUs

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

The size of current state-of-the-art networks makes computation a critical issue,
in particular for training and optimizing meta-parameters.

Although they were historically developed for mass-market real-time CGI, the
highly parallel architecture of GPUs is extremely fitting to signal processing and
high dimension linear algebra.

Their use is instrumental in the success of deep-learning (Raina et al., 2009;
Ciresan et al., 2010; Krizhevsky et al., 2012; Shi et al., 2016).

François Fleuret Deep learning / 6.6. Using GPUs 1 / 19

CPU RAM

CPU cores

Disk and network

GPU1 cores

GPU1 RAM

GPU2 cores

GPU2 RAM

A standard NVIDIA GTX 3090 has 10, 500 computing cores clocked at 1.5GHz,
and delivers a peak performance of ≃ 35TFlops.

The precise structure of a GPU memory and how its cores communicate with it
is a complicated topic that we will not cover here.

François Fleuret Deep learning / 6.6. Using GPUs 2 / 19

Notes

The thickness of the arrows illustrate the speed of
the communication between components. Thin
arrows mean slow access wile thick arrows means
fast.
Each core of the CPU is able to run its own
program and has access to the CPU memory
(CPU RAM) at high speed, and to the disk and
network through a slower bus. A CPU may have
up to tens of cores (16, 32, sometimes 64).
A GPU comes with its own memory (GPU RAM)
and thousands of cores. The GPU cores have a
very fast access to the GPU memory, while the
access between the CPU and GPU memories is
quite slow: moving data from the CPU memory
to the GPU memory is inefficient.
We will not cover the organization of the GPU
memory (groups of cores, groups of groups, cache,
etc.) but it is worth mentioning that properly
programming a GPU at a low level is an extremely
difficult task that requires strong expertise.

TABLE 7. COMPARATIVE EXPERIMENT RESULTS (TIME PER MINI-BATCH IN SECOND)

Desktop CPU (Threads used) Server CPU (Threads used) Single GPU
1 2 4 8 1 2 4 8 16 32 G980 G1080 K80

Caffe 1.324 0.790 0.578 15.444 1.355 0.997 0.745 0.573 0.608 1.130 0.041 0.030 0.071
CNTK 1.227 0.660 0.435 - 1.340 0.909 0.634 0.488 0.441 1.000 0.045 0.033 0.074

FCN-S TF 7.062 4.789 2.648 1.938 9.571 6.569 3.399 1.710 0.946 0.630 0.060 0.048 0.109
MXNet 4.621 2.607 2.162 1.831 5.824 3.356 2.395 2.040 1.945 2.670 - 0.106 0.216
Torch 1.329 0.710 0.423 - 1.279 1.131 0.595 0.433 0.382 1.034 0.040 0.031 0.070
Caffe 1.606 0.999 0.719 - 1.533 1.045 0.797 0.850 0.903 1.124 0.034 0.021 0.073
CNTK 3.761 1.974 1.276 - 3.852 2.600 1.567 1.347 1.168 1.579 0.045 0.032 0.091

AlexNet-S TF 6.525 2.936 1.749 1.535 5.741 4.216 2.202 1.160 0.701 0.962 0.059 0.042 0.130
MXNet 2.977 2.340 2.250 2.163 3.518 3.203 2.926 2.828 2.827 2.887 0.020 0.014 0.042
Torch 4.645 2.429 1.424 - 4.336 2.468 1.543 1.248 1.090 1.214 0.033 0.023 0.070
Caffe 11.554 7.671 5.652 - 10.643 8.600 6.723 6.019 6.654 8.220 - 0.254 0.766
CNTK - - - - - - - - - - 0.240 0.168 0.638

RenNet-50 TF 23.905 16.435 10.206 7.816 29.960 21.846 11.512 6.294 4.130 4.351 0.327 0.227 0.702
MXNet 48.000 46.154 44.444 43.243 57.831 57.143 54.545 54.545 53.333 55.172 0.207 0.136 0.449
Torch 13.178 7.500 4.736 4.948 12.807 8.391 5.471 4.164 3.683 4.422 0.208 0.144 0.523
Caffe 2.476 1.499 1.149 - 2.282 1.748 1.403 1.211 1.127 1.127 0.025 0.017 0.055
CNTK 1.845 0.970 0.661 0.571 1.592 0.857 0.501 0.323 0.252 0.280 0.025 0.017 0.053

FCN-R TF 2.647 1.913 1.157 0.919 3.410 2.541 1.297 0.661 0.361 0.325 0.033 0.020 0.063
MXNet 1.914 1.072 0.719 0.702 1.609 1.065 0.731 0.534 0.451 0.447 0.029 0.019 0.060
Torch 1.670 0.926 0.565 0.611 1.379 0.915 0.662 0.440 0.402 0.366 0.025 0.016 0.051
Caffe 3.558 2.587 2.157 2.963 4.270 3.514 3.381 3.364 4.139 4.930 0.041 0.027 0.137
CNTK 9.956 7.263 5.519 6.015 9.381 6.078 4.984 4.765 6.256 6.199 0.045 0.031 0.108

AlexNet-R TF 4.535 3.225 1.911 1.565 6.124 4.229 2.200 1.396 1.036 0.971 0.227 0.317 0.385
MXNet 13.401 12.305 12.278 11.950 17.994 17.128 16.764 16.471 17.471 17.770 0.060 0.032 0.122
Torch 5.352 3.866 3.162 3.259 6.554 5.288 4.365 3.940 4.157 4.165 0.069 0.043 0.141
Caffe 6.741 5.451 4.989 6.691 7.513 6.119 6.232 6.689 7.313 9.302 - 0.116 0.378
CNTK - - - - - - - - - - 0.206 0.138 0.562

RenNet-56 TF - - - - - - - - - - 0.225 0.152 0.523
MXNet 34.409 31.255 30.069 31.388 44.878 43.775 42.299 42.965 43.854 44.367 0.105 0.074 0.270
Torch 5.758 3.222 2.368 2.475 8.691 4.965 3.040 2.560 2.575 2.811 0.150 0.101 0.301
Caffe - - - - - - - - - - - - -
CNTK 0.186 0.120 0.090 0.118 0.211 0.139 0.117 0.114 0.114 0.198 0.018 0.017 0.043

LSTM TF 4.662 3.385 1.935 1.532 6.449 4.351 2.238 1.183 0.702 0.598 0.133 0.065 0.140
MXNet - - - - - - - - - - 0.089 0.079 0.149
Torch 6.921 3.831 2.682 3.127 7.471 4.641 3.580 3.260 5.148 5.851 0.399 0.324 0.560

Note: The mini-batch sizes for FCN-S, AlexNet-S, ResNet-50, FCN-R, AlexNet-R, ResNet-56 and LSTM are 64, 16, 16, 1024, 1024, 128 and 128 respectively.

TABLE 8. COMPARATIVE EXPERIMENT RESULTS
BETWEEN SINGLE GPU AND MULTIPLE GPUS

(TIME PER MINI-BATCH IN SECOND)

of GK210
1 2 4

Caffe 0.239 0.131 0.094
CNTK 0.181 0.111 0.072

FCN-R TF 0.208 0.144 0.121
MXNet 0.184 0.104 0.086
Torch 0.165 0.110 0.112
Caffe 0.137 0.085 0.047
CNTK 0.108 0.062 0.037

AlexNet-R TF 0.385 0.332 0.321
MXNet 0.122 0.070 0.041
Torch 0.141 0.077 0.046
Caffe 0.378 0.254 0.177
CNTK 0.562 0.351 0.170

RenNet-56 TF 0.523 0.291 0.197
MXNet 0.270 0.167 0.101
Torch 0.301 0.182 0.096

Note: The mini-batch sizes for FCN-R, AlexNet-R
and ResNet-56 are 4096, 1024 and 128 respectively.

TABLE 9. THE SIZE OF MINI-BATCH USED FOR DIFFERENT NETWORKS
ON CPU PLATFORMS.

Network Mini-batch size

FCN-S 64
AlexNet-S 16
ResNet-50 16

FCN-R 1024
AlexNet-R 128
ResNet-56 128

LSTM 256

AlexNet-S. The running time results of mini-batch size
16 with different number of threads are shown in Fig. 3. On
i7-3820, Caffe surpasses the other four tools under 1, 2, 4
threads, but fails to run with 8 threads. CNTK and Torch
have close performance with 1-4 threads and they also fail
to execute with 8 threads. On E5-2630v3, Caffe achieves
the best performance with 1, 2, 4, and 8 threads. Among all
configurations, TensorFlow achieves the best performance
by using 16 threads.

ResNet-50. Since CNTK does not support batch nor-

(Shi et al., 2016)

François Fleuret Deep learning / 6.6. Using GPUs 3 / 19

Notes

The table shows the results of a detailed bench-
mark between desktop CPU, server CPU, and sin-
gle GPU for several deep learning libraries. The
reported values are the time in seconds is takes to
process one mini-batch. The take-home message
is that GPUs provide a speed up of an order of
magnitude or more.

The current standard to program a GPU is through the CUDA (“Compute Unified
Device Architecture”) model, defined by NVIDIA.

Alternatives are OpenCL, backed by several CPU/DSP manufacturers, and more
recently AMD’s HIP/ROCm.

Google developed its own line of processors for deep learning dubbed TPU (“Tensor
Processing Unit”) which offer excellent flops/watt performance.

In practice, as of today (29.03.2022), NVIDIA hardware remains the default choice for
deep learning, and CUDA is the reference framework in use.

François Fleuret Deep learning / 6.6. Using GPUs 4 / 19

From a practical perspective, libraries interface the framework (e.g. PyTorch) with the
“computational backend” (e.g. CPU or GPU)

• BLAS (“Basic Linear Algebra Subprograms”): vector/matrix products, and the
cuBLAS implementation for NVIDIA GPUs,

• LAPACK (“Linear Algebra Package”): linear system solving, Eigen-decomposition,
etc.

• cuDNN (“NVIDIA CUDA Deep Neural Network library”) computations specific to
deep-learning on NVIDIA GPUs.

François Fleuret Deep learning / 6.6. Using GPUs 5 / 19

Using GPUs in PyTorch

François Fleuret Deep learning / 6.6. Using GPUs 6 / 19

The use of the GPUs in PyTorch is done by creating or copying tensors into their
memory.

Operations on tensors in a device’s memory are done by the said device.

François Fleuret Deep learning / 6.6. Using GPUs 7 / 19

Notes

Multiplying two tensors which are on the CPU
(resp. GPU) memory is done by the CPU (resp.
GPU).
Basic tensor operators, and virtually all functions
require operand to be on the same device. E.g.
when a forward pass has been done on the GPU,
the output is on the GPU. Computing a loss with
the target values would require the targets to also
be on the GPU.

As for the type, the device can be specified to the creation operations as a device, or as
a string that will implicitly be converted to a device.

>>> x = torch.zeros(10, 10)
>>> x.device
device(type='cpu')
>>> x = torch.zeros(10, 10, device = torch.device('cuda'))
>>> x.device
device(type='cuda', index=0)

>>> x = torch.zeros(10, 10, device = torch.device('cuda:1'))
>>> x.device
device(type='cuda', index=1)

>>> x = torch.zeros(10, 10, device = 'cuda:0')
>>> x.device
device(type='cuda', index=0)

François Fleuret Deep learning / 6.6. Using GPUs 8 / 19

The torch.Tensor.to(device) returns a clone on the specified device if the tensor is
not already there or returns the tensor itself if it was already there.

The argument device can be either a string, or a device.

Alternatives are torch.Tensor.cuda([gpu_id]) and torch.Tensor.cpu().

!
Moving data between the CPU and the GPU memories is far slower than
moving it inside the GPU memory.

François Fleuret Deep learning / 6.6. Using GPUs 9 / 19

>>> u = torch.tensor([1, 2, 3])
>>> u.device
device(type='cpu')
>>> v = u.to('cuda') # copy of u
>>> v
tensor([1, 2, 3], device='cuda:0')
>>> v[0] = 5
>>> u
tensor([1, 2, 3])

>>> w = u.to('cpu') # this is u itself
>>> w
tensor([1, 2, 3])
>>> w[0] = 5
>>> u
tensor([5, 2, 3])

François Fleuret Deep learning / 6.6. Using GPUs 10 / 19

Notes

Here, changing v does not change u because v
was a copy.
But w points to the same data as u because the
latter was already on the device.

>>> m = torch.randn(10, 10)
>>> m.device
device(type='cpu')
>>> x = torch.randn(10, 100)
>>> q = m@x
>>> q.device
device(type='cpu')

>>> m = m.to('cuda')
>>> x = x.to('cuda')
>>> q = m@x # This is done on GPU (#0)
>>> q.device
device(type='cuda', index=0)

François Fleuret Deep learning / 6.6. Using GPUs 11 / 19

Since operations maintain the types and devices of the tensors, you generally do not
need to worry about making your code generic regarding these aspects.

To explicitly create new tensors you can use a tensor’s new_*() methods.

>>> u = torch.randn(3, 5, dtype = torch.float64)
>>> v = u.new_zeros(1, 2)
>>> v
tensor([[0., 0.]], dtype=torch.float64)
>>> w = torch.empty(3, 5, dtype = torch.float16,
... device = 'cuda:1').fill_(1.0)
>>> w.new_full((2, 3), 1.4)
tensor([[1.4004, 1.4004, 1.4004],

[1.4004, 1.4004, 1.4004]], device='cuda:1', dtype=torch.float16)

François Fleuret Deep learning / 6.6. Using GPUs 12 / 19

Notes

new_* methods allow to create tensors which are
of the same type and on the same device as the
object which we call them on:

• u is of type float64 on the CPU, and so
is u.new_*.

• w is of type float16 on the GPU, and so
is w.new_*.

Apart from copy_(), operations cannot mix different tensor types or devices:

>>> import torch
>>> x = torch.randn(3, 5)
>>> y = torch.randn(3, 5).to('cuda')
>>> x.copy_(y)
tensor([[0.4071, 0.7589, -0.5321, 0.9103, -1.4985],

[-0.1059, 2.1554, -0.0774, -0.4520, 1.5123],
[0.1322, 0.1002, -0.4071, 1.8927, -0.5800]])

>>> x + y
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
RuntimeError: Expected object of type torch.FloatTensor but found type
torch.cuda.FloatTensor for argument #3 'other'

!
Similarly if multiple GPUs are available, cross-GPUs operations are not
allowed by default, with the exception of copy_().

Another exception to this rule are 0d tensors, which act as scalars and can be combined
without device constraint.

François Fleuret Deep learning / 6.6. Using GPUs 13 / 19

Notes

One has to explicitly move the objects to the
same device before making an operation.
x + y fails because x is located on the CPU while
y is on the GPU.

The method torch.Module.to(device) moves all the parameters and buffers of the
module (and registered sub-modules recursively) to the specified device.

!
Although they do not have a “_” in their names, these Module operations
make changes in-place.

François Fleuret Deep learning / 6.6. Using GPUs 14 / 19

Notes

A tensor can be moved to a device with x =
x.to(...). This is the case for minibatches and
target values.
A module (network, criterion) can be moved to
a device by simply calling model.to(...) and
criterion.to(...).

The method torch.cuda.is_available() returns a Boolean value indicating if a GPU
is available, so a typical GPU-friendly code would start with

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

and then have some device = device in some places, and/or

model.to(device)
criterion.to(device)
train_input, train_target = train_input.to(device), train_target.to(device)
test_input, test_target = test_input.to(device), test_target.to(device)

François Fleuret Deep learning / 6.6. Using GPUs 15 / 19

Multiple GPUs with nn.DataParallel

François Fleuret Deep learning / 6.6. Using GPUs 16 / 19

A very simple way to leverage multiple GPUs is to wrap the model in a
nn.DataParallel.

The forward of nn.DataParallel(my_module) will

1. split the input mini-batch along the first dimension in as many mini-batches as
there are GPUs,

2. send them to the forwards of clones of my_module located on each GPU,

3. concatenate the results.

And it is (of course!) autograd-compliant.

François Fleuret Deep learning / 6.6. Using GPUs 17 / 19

If we define a simple module to printout the calls to forward.

class Dummy(nn.Module):
def __init__(self, m):

super().__init__()
self.m = m

def forward(self, x):
print('Dummy.forward', x.size(), x.device)
return self.m(x)

François Fleuret Deep learning / 6.6. Using GPUs 18 / 19

x = torch.randn(50, 10)
model = Dummy(nn.Linear(10, 5))

print('On CPU')
y = model(x)

x = x.to('cuda')
model.to('cuda')

print('On GPU w/o nn.DataParallel')
y = model(x)

print('On GPU w/ nn.DataParallel')
parallel_model = nn.DataParallel(model)
y = parallel_model(x)

will print, on a machine with two GPUs:

On CPU
Dummy.forward torch.Size([50, 10]) cpu
On GPU w/o nn.DataParallel
Dummy.forward torch.Size([50, 10]) cuda:0
On GPU w/ nn.DataParallel
Dummy.forward torch.Size([25, 10]) cuda:0
Dummy.forward torch.Size([25, 10]) cuda:1

François Fleuret Deep learning / 6.6. Using GPUs 19 / 19

Notes

This little example shows that on a machine with
two GPUs, the input batch of fifty samples is
split in two batches of twenty-five samples.
nn.DataParallel allows to leverage multiple
GPUs with a minimal change of the code, by
simply wrapping the model.

References

D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber. Deep big simple neural nets
excel on handwritten digit recognition. CoRR, abs/1003.0358, 2010.

A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural
networks. In Neural Information Processing Systems (NIPS), 2012.

R. Raina, A. Madhavan, and A. Y. Ng. Large-scale deep unsupervised learning using graphics
processors. In International Conference on Machine Learning (ICML), pages 873–880, 2009.

S. Shi, Q. Wang, P. Xu, and X. Chu. Benchmarking state-of-the-art deep learning software tools.
CoRR, abs/1608.07249, 2016.

	Using GPUs in PyTorch
	Multiple GPUs with nn.DataParallel
	References

