Deep learning

5.7. Writing an autograd function

Francois Fleuret

https://fleuret.org/dlc/

UNIVERSITE
DE GENEVE


https://fleuret.org/dlc/

We have seen how to write new torch.nn.Modules. We may have to
implement new functions usable with autograd, so that Modules remain defined
through their forward pass alone.

Frangois Fleuret Deep learning / 5.7. Writing an autograd function

Notes

This series of slides is provided for the sake of
completeness, but in any normal situations exist-
ing autograd compliant functions suffice. This
also shades a light on the actual implementation
of the autograd mechanics.

1/7



This is achieved by writing sub-classes of torch.autograd.Function, which have to
implement two static methods:

e forward(...) takes as argument a context to store information needed for the
backward pass, and the quantities it should process, which are Tensors for the
differentiable ones, but can also be any other types. It should return one or several
Tensors.

e backward(...) takes as argument the context and as many Tensors as forward
returns Tensors, and it should return as many values as forward takes argument,
Tensors for the tensors, and None for the others.

Evaluating such a Function is done through its apply(...) method, which takes as
many arguments as forward(...), context excluded.

Francois Fleuret Deep learning / 5.7. Writing an autograd function 2/7



If you create a new Function named Dummy, when Dummy.apply(...) is called,
autograd first adds a new node of type DummyBackward in its graph, and then calls
Dummy . forward(...).

To compute the gradient, autograd evaluates the graph and calls
Dummy .backward(...) when it reaches the corresponding node, with the same context

as the one given to Dummy.forward(...).

This machinery is hidden to you and this level of details should not be required for
normal operations.

Francois Fleuret Deep learning / 5.7. Writing an autograd function 3/7



Consider a function to set to zero the first n components of a tensor.

class KillHead(Function):
@staticmethod
def forward(ctx, input, n):
ctx.n = n
result = input.clone()
result[:, :ctx.n] =0
return result

@staticmethod

def backward(ctx, grad_output):
result = grad_output.clone()
result[:, :ctx.n] =0
return result, None

killhead = KillHead.apply

Francois Fleuret Deep learning / 5.7. Writing an autograd function

4/7



Francois Fleuret

It can be used for instance

y = torch.randn(3, 8)
x = torch.randn(y.size()) .requires_grad_()

criterion = nn.MSELoss()
optimizer = torch.optim.SGD([x], 1r = 1.0)

for k in range(5):
r = killhead(x, 2)
loss = criterion(r, y)
print(k, loss.item())

optimizer.zero_grad()
loss.backward ()
optimizer.step()

prints

0 1.5175858736038208
1 1.310139536857605

2 1.1358269453048706
3 0.9893561005592346
4 0.8662799000740051

Deep learning / 5.7. Writing an autograd function

5/7



Francois Fleuret

The torch.autograd.gradcheck(...) function checks numerically that the backward
function is correct, i.e.

fi(xt,...,xj+€...,xp) = fi(xt,...,x; —€,...,xp)

Vi, J,
d 2¢

= (Jr(x))ij| < @

X = torch.empty(10, 20, dtype = torch.float64).uniform_(-1, 1).requires_grad_()
input = (%, 4)

if gradcheck(killhead, input, eps = le-6, atol = le-4):
print('All good captain.')

else:
print('Ouch')

A It is advisable to use torch.float64s for such a check.

Deep learning / 5.7. Writing an autograd function 6/7



Francois Fleuret

Consider a function that takes two similar sized Tensors and apply component-wise
(u,v) — |uvl.

The backward has to compute two tensors, and the forward must keep track of the
input to compute the derivatives in the backward.

class Something(Function):
Ostaticmethod
def forward(ctx, inputl, input2):
ctx.save_for_backward(inputl, input2)
return (inputl * input2).abs()

@staticmethod
def backward(ctx, grad_output):
inputl, input2 = ctx.saved_tensors
return grad_output * inputl.sign() * input2.abs(), \
grad_output * inputl.abs() * input2.sign()

something = Something.apply

Deep learning / 5.7. Writing an autograd function

7/7



