
Deep learning

4.3. PyTorch modules and batch processing

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

Elements from torch.nn.functional are autograd-compliant functions which
compute a result from provided arguments alone.

Subclasses of torch.nn.Module are losses and network components. The latter
embed parameters to be optimized during training.

Parameters are of the type torch.nn.Parameter which is a Tensor with
requires_grad to True, and known to be a model parameter by various utility
functions, in particular torch.nn.Module.parameters().

Usually torch.nn.functional is imported as F, and torch.nn as nn.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 1 / 15

!
Functions and modules from nn process batches of inputs stored in a
tensor whose first dimension indexes them, and produce a corresponding
tensor with the same additional dimension.

E.g. a fully connected layer RC → RD expects as input a tensor of size N × C
and computes a tensor of size N × D, where N is the number of samples and
can vary from a call to another. We come back to this in a second.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 2 / 15

Notes

For instance, given that a sample from the
MNIST data-set is a 28 × 28 grayscale image,
a minibatch of 64 samples would be stored in a
tensor of size 64 × 1 × 28 × 28 and this is the
type of tensors that a LeNet5 expects as input.

The autograd-compliant function

F.relu(input, inplace=False)

takes a tensor of any size as input, applies ReLU on each value to produce a result
tensor of same size.

>>> x
tensor([[0.8008, -0.2586, 0.5019, -0.2002, -0.7416],

[0.0557, 0.6046, 0.0864, -0.5929, 1.2606]])
>>> F.relu(x)
tensor([[0.8008, 0.0000, 0.5019, 0.0000, 0.0000],

[0.0557, 0.6046, 0.0864, 0.0000, 1.2606]])

inplace indicates if the operation should modify the argument itself. This may be
desirable to reduce the memory footprint of the processing.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 3 / 15

The module

nn.Linear(in_features, out_features, bias=True)

implements a RC → RD fully-connected layer. It takes as input a tensor of size N × C
and produces a tensor of size N × D.

>>> f = nn.Linear(in_features = 10, out_features = 4)
>>> for n, p in f.named_parameters(): print(n, p.size())
...
weight torch.Size([4, 10])
bias torch.Size([4])
>>> x = torch.randn(523, 10)
>>> y = f(x)
>>> y.size()
torch.Size([523, 4])

!
The weights and biases are automatically randomized at creation. We
will come back to that later.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 4 / 15

The module

nn.MSELoss()

implements the Mean Square Error loss: the sum of the component-wise squared
differences, divided by the total number of components in the tensors.

>>> f = nn.MSELoss()
>>> x = torch.tensor([[3.]])
>>> y = torch.tensor([[0.]])
>>> f(x, y)
tensor(9.)
>>> x = torch.tensor([[3., 0., 0., 0.]])
>>> y = torch.tensor([[0., 0., 0., 0.]])
>>> f(x, y)
tensor(2.2500)

The first parameter of a loss is traditionally called the input and the second the target.
These two quantities may be of different dimensions or even types for some losses (e.g.
for classification).

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 5 / 15

! Criteria do not accept a target with requires_grad to True.

>>> import torch
>>> f = nn.MSELoss()
>>> x = torch.tensor([3., 2.]).requires_grad_()
>>> y = torch.tensor([0., -2.]).requires_grad_()
>>> f(x, y)
Traceback (most recent call last):
/.../
AssertionError: nn criterions don't compute the gradient w.r.t.
targets - please mark these tensors as not requiring gradients

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 6 / 15

Batch processing

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 7 / 15

Functions and modules from nn process samples by batches. This is motivated by the
computational speed-up it induces.

Training a large network on CIFAR10:

Batch size Time per epoch
1 4h22min
64 4min50s

speed up of ×54.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 8 / 15

To evaluate a module on a sample, both the module’s parameters and the sample have
to be first copied into cache memory, which is fast but small.

For any model of reasonable size, only a fraction of its parameters can be kept in cache,
so a module’s parameters have to be copied there every time they are used.

Memory transfers are slower than computation. Batch processing cuts down to one
copy of the parameters to the cache per batch.

It also cuts down the use of Python loops, which are awfully slow.

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 9 / 15

Notes

Let f1, . . . , fd be some modules of a model, and
x1, . . . , xN be samples.
Evaluating

fD (fD−1(. . . f2(f1(xn)))), n = 1, . . . ,N.

by batches is motivated by

1. an f (x) can be computed only if the
parameters of f and x are in the cache
memory,

2. moving data into the cache memory is
slower than the computation per se,

3. the [parameters of the] fd s cannot all fit in
the cache memory at the same time,

4. several xn can [usually] fit in the cache
memory at the same time.

Peak performance is achieved when there is no
delay due to copying data to the memories. Op-
timizing the way copies are made to the memory
is the bottleneck.
Note that this is a rough explanation of the issues
related to cache memory and batch processing.
There are actually multiple levels of cache, shar-
ing between computational cores etc. Properly
using highly parallel processing devics such as
GPUs is a very difficult task which explains in
particular the complexity of drivers and libraries
such as NVIDIA’s cudnn.

Consider a model composed of three modules

f = f3 ◦ f2 ◦ f1,

and we want to compute f (x1), f (x2), f (x3).

Copying the xns to cache memory

Copying the fd s’ parameters to cache memory

Computing a fd (.)

Processing samples one by one:

Time

Batch processing:

Time

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 10 / 15

Notes

Each colored block represents and operation that
takes time. Processing the samples one by one
requires:

• copy sample x1 to memory (first green),

• copy the parameters of f1 to memory (first
blue),

• compute f1(x1) (first red),

• copy the parameters of f2 to memory
(second blue),

• apply f2 on the previous result still in
memory (second red),

• etc.

Processing the samples in the same batch, as-
suming that the three samples can be held in
memory all together alongside the parameters of
one function make the economy of copying again
and again the parameters of the fd s.
The goal of batch processing is to reuse as much
as possible elements which are already in the
cache memory.

With

def timing(x, w, batch = False, nb = 101):
t = torch.zeros(nb)

for u in range(nb):
t0 = time.perf_counter()
if batch:

y = x.mm(w.t())
else:

y = torch.empty(x.size(0), w.size(0))
for k in range(y.size(0)): y[k] = w.mv(x[k])

y.is_cuda and torch.cuda.synchronize()
t[u] = time.perf_counter() - t0

return t.median().item()

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 11 / 15

Notes

Here is an example where we compute a simple
vector-matrix product. w are the function param-
eters and x the samples, and depending on the
argument batch the computation is done one row
at a time or in one shot, allowing the speed-up
of the batch computation.

x = torch.randn(2500, 1000)
w = torch.randn(1500, 1000)
print('Batch-processing speed-up on CPU %.1f' %

(timing(x, w, batch = False) / timing(x, w, batch = True)))

x, w = x.to('cuda'), w.to('cuda')
print('Batch-processing speed-up on GPU %.1f' %

(timing(x, w, batch = False) / timing(x, w, batch = True)))

prints

Batch-processing speed-up on CPU 4.6
Batch-processing speed-up on GPU 144.4

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 12 / 15

Formally, we have to revisit a bit some expressions we saw previously for fully connected
layers. We had

∀l , n, w (l) ∈ Rdl×dl−1 , x
(l−1)
n ∈ Rdl−1 , s

(l)
n = w (l) x

(l−1)
n .

From now on, we will use row vectors, so that we can represent a series of samples as a
2d array with the first index being the sample’s index.

x =

 x1,1 . . . x1,D
...

. . .
...

xN,1 . . . xN,D

 =


(x1)

⊤

...

(xN)
⊤

 ,

which is an element of RN×D .

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 13 / 15

To make all sample row vectors and apply a linear operator, we want

∀n, s
(l)
n =

(
w (l)

(
x
(l−1)
n

)⊤
)⊤

= x
(l−1)
n

(
w (l)

)⊤

which gives a tensorial expression for the full batch

s(l) = x(l−1)
(
w (l)

)⊤
.

And in torch/nn/functional.py

def linear(input, weight, bias=None):
if input.dim() == 2 and bias is not None:

fused op is marginally faster
return torch.addmm(bias, input, weight.t())

output = input.matmul(weight.t())
if bias is not None:

output += bias
return output

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 14 / 15

Notes


s
(l)
1

.

.

.

s
(l)
N


︸ ︷︷ ︸

s(l)∈RN×dl

=


x
(l−1)
1

.

.

.

x
(l−1)
N


︸ ︷︷ ︸

x(l−1)∈RN×dl−1

w
(l)
1 . . . w

(l)
dl


︸ ︷︷ ︸

w(l)∈Rdl−1×dl

Similarly for the backward pass of a linear layer we get[[
∂ℒ

∂w (l)

]]
=

[[
∂ℒ

∂s(l)

]]⊤
x(l−1),

and [[
∂ℒ

∂x(l)

]]
=

[[
∂𝓁

∂s(l+1)

]]
w (l+1).

François Fleuret Deep learning / 4.3. PyTorch modules and batch processing 15 / 15

	Batch processing

