
Deep learning

3.6. Back-propagation

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/


We want to train an MLP by minimizing a loss over the training set

ℒ (w , b) =
∑
n

𝓁(f (xn;w , b), yn).

To use gradient descent, we need the expression of the gradient of the
per-sample loss

𝓁n = 𝓁(f (xn;w , b), yn)

with respect to the parameters, e.g.

∂𝓁n

∂w
(l)
i,j

and
∂𝓁n

∂b
(l)
i

.

François Fleuret Deep learning / 3.6. Back-propagation 1 / 11

Notes

We saw in 3.5. “Gradient descent” that, as soon
as we can compute the gradient of the loss w.r.t.
the parameters, we can optimize them through
gradient descent.
What we are missing here is, how to compute the
derivative of the loss w.r.t. the parameters of a
multi-layer perceptron.
The total loss ℒ is the sum over all the samples
of the individual losses 𝓁(f (xn;w , b), yn), where
xn is sample n of the training set, and yn its label,
w are the weights of the multi-layer perceptron,
and b the biases, f (xn;w , b) is the response of
the multi-layer perceptron on sample xn.
The loss 𝓁(f (xn;w , b), yn) on sample n is com-
puted from the response of the predictor. Note
that the quantities f (xn;w , b) and yn can be of

the same type, for instance with the MSE loss,
where they both are real numbers, but as we will
see with other loss (e.g. “cross-entropy”) it may
not always be the case.
For clarity, given a layer index l of the multi-layer

perceptron: w (l) is the weight matrix of layer
l , with as many columns as the layer’s input di-
mension and as many rows as the layer’s output

dimension, b(l) is the bias of layer l , with as many
components as the layer’s output dimension.
With the historical view of a layer as being com-
posed of “neurons”, the output dimension cor-
responds to the number of neurons in the layer,
and the input dimension is the number of neu-
rons in the previous layer (or to the model’s input
dimension).



For clarity, we consider a single training sample x , and introduce s(1), . . . , s(L)

as the summations before activation functions.

x(0) = x
w (1),b(1)−−−−−→ s(1)

σ−→ x(1)
w (2),b(2)−−−−−→ s(2)

σ−→ . . .
w (L),b(L)−−−−−→ s(L)

σ−→ x(L) = f (x ;w , b).

Formally we set x(0) = x ,

∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)

)
,

and we set the output of the network as f (x ;w , b) = x(L).

This is the forward pass.

François Fleuret Deep learning / 3.6. Back-propagation 2 / 11



The core principle of the back-propagation algorithm is the “chain rule” from
differential calculus:

(g ◦ f )′ = (g ′ ◦ f )f ′.

The linear approximation of a composition of mappings is the product of their
individual linear approximations.

This generalizes to longer compositions and higher dimensions

JfN◦fN−1◦···◦f1 (x) = JFN (fN−1(. . . (x))) . . . Jf3 (f2(f1(x))) Jf2 (f1(x)) Jf1 (x)

where Jf (x) is the Jacobian of f at x , that is the matrix of the linear
approximation of f in the neighborhood of x .

François Fleuret Deep learning / 3.6. Back-propagation 3 / 11



Derivatives w.r.t the activations

x(l−1) w (l), b(l)−−−−−→ s(l)
σ−−−→ x(l)

Since s
(l)
i influences 𝓁 only through x

(l)
i with

x
(l)
i = σ(s

(l)
i ),

we have

∂𝓁

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

∂x
(l)
i

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

σ′
(
s
(l)
i

)
,

And since x
(l−1)
j influences 𝓁 only through the s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

∂s
(l)
i

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

w
(l)
i,j .

François Fleuret Deep learning / 3.6. Back-propagation 4 / 11



Derivatives w.r.t the weights an biases

x(l−1) w (l), b(l)−−−−−→ s(l)
σ−−−→ x(l)

Since w
(l)
i,j and b

(l)
i influences 𝓁 only through s

(l)
i with

s
(l)
i =

∑
j

w
(l)
i,j x

(l−1)
j + b

(l)
i ,

we have

∂𝓁

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

∂s
(l)
i

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

x
(l−1)
j ,

∂𝓁

∂b
(l)
i

=
∂𝓁

∂s
(l)
i

.

François Fleuret Deep learning / 3.6. Back-propagation 5 / 11

Notes

During the forward pass, in each layer l , we keep
trace of:

• the pre-non-linearity activations s
(l)
i , which

we need to compute ∂𝓁

∂s
(l)
i

,

• the inputs x
(l−1)
j to the layer which we

need to compute ∂𝓁

∂w
(l)
i,j

.



To summarize: we can compute ∂𝓁

∂x
(L)
i

from the definition of 𝓁, and recursively

propagate backward the derivatives of the loss w.r.t the activations with

∂𝓁

∂s
(l)
i

=
∂𝓁

∂x
(l)
i

σ′
(
s
(l)
i

)
and

∂𝓁

∂x
(l−1)
j

=
∑
i

∂𝓁

∂s
(l)
i

w
(l)
i,j .

And then compute the derivatives w.r.t the parameters with

∂𝓁

∂w
(l)
i,j

=
∂𝓁

∂s
(l)
i

x
(l−1)
j ,

and
∂𝓁

∂b
(l)
i

=
∂𝓁

∂s
(l)
i

.

This is the backward pass.

François Fleuret Deep learning / 3.6. Back-propagation 6 / 11



To write in tensorial form we will use the following notation for the gradient of a loss
𝓁 : RN → R, [

∂𝓁

∂x

]
=


∂𝓁
∂x1
...
∂𝓁
∂xN

 ,

and if ψ : RN×M → R, we will use the notation

[[
∂ψ

∂w

]]
=


∂ψ
∂w1,1

. . . ∂ψ
∂w1,M

...
. . .

...
∂ψ
∂wN,1

. . . ∂ψ
∂wN,M

 .

François Fleuret Deep learning / 3.6. Back-propagation 7 / 11



x(l−1) ×

w(l)

+

b(l)

s(l) σ x(l)

[
∂𝓁

∂x(l)

][
∂𝓁

∂s(l)

]
⊙

σ′

·⊤×
[

∂𝓁
∂x(l−1)

]

[
∂𝓁

∂b(l)

][[
∂𝓁

∂w(l)

]]

× ·⊤

François Fleuret Deep learning / 3.6. Back-propagation 8 / 11



Forward pass

Compute the activations.

x(0) = x , ∀l = 1, . . . , L,

{
s(l) = w (l)x(l−1) + b(l)

x(l) = σ
(
s(l)

)
Backward pass

Compute the derivatives of the loss w.r.t. the activations.
[
∂𝓁
∂x(L)

]
from the definition of 𝓁

if l < L,
[
∂𝓁
∂x(l)

]
=

(
w (l+1)

)⊤ [
∂𝓁

∂s(l+1)

]
[
∂𝓁

∂s(l)

]
=

[
∂𝓁

∂x(l)

]
⊙ σ′

(
s(l)

)

Compute the derivatives of the loss w.r.t. the parameters.[[
∂𝓁

∂w (l)

]]
=

[
∂𝓁

∂s(l)

](
x(l−1)

)⊤
[
∂𝓁

∂b(l)

]
=

[
∂𝓁

∂s(l)

]
.

Gradient step

Update the parameters.

w (l) ← w (l) − η
[[

∂𝓁

∂w (l)

]]
b(l) ← b(l) − η

[
∂𝓁

∂b(l)

]
François Fleuret Deep learning / 3.6. Back-propagation 9 / 11

Notes

Here ⊙ denotes the component-wise multiplica-
tion, also known as the Hadamard product.



In spite of its hairy formalization, the backward pass is a simple algorithm: apply the
chain rule again and again.

As for the forward pass, it can be expressed in tensorial form. Heavy computation is
concentrated in linear operations, and all the non-linearities go into component-wise
operations.

Without tricks, we have to keep in memory all the activations computed during the
forward pass.

François Fleuret Deep learning / 3.6. Back-propagation 10 / 11



Regarding computation, since the costly operation for the forward pass is

s(l) = w (l)x(l−1) + b(l)

and for the backward [
∂𝓁

∂x(l)

]
=

(
w (l+1)

)⊤
[

∂𝓁

∂s(l+1)

]
and [[

∂𝓁

∂w (l)

]]
=

[
∂𝓁

∂s(l)

](
x(l−1)

)⊤
,

the rule of thumb is that the backward pass is twice more expensive than the forward
one.

François Fleuret Deep learning / 3.6. Back-propagation 11 / 11


