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A linear classifier of the form

RD → R
x 7→ σ(w · x + b),

with w ∈ RD , b ∈ R, and σ : R → R, can naturally be extended to a
multi-dimension output by applying a similar transformation to every output

RD → RC

x 7→ σ(wx + b),

with w ∈ RC×D , b ∈ RC , and σ is applied component-wise.
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Even though it has no practical value implementation-wise, we can represent
such a model as a combination of units. More importantly, we can extend it.

σx f (x ; w, b)

w, b

σ

σ

σ

σ

σ

σ

x f (x ; w, b)

w, b

Single unit One layer of units

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

x f (x ; w, b)

w(1), b(1) w(2), b(2) w(3), b(3)

Multiple layers of units
François Fleuret Deep learning / 3.4. Multi-Layer Perceptrons 2 / 10



This latter structure can be formally defined, with x(0) = x ,

∀l = 1, . . . , L, x(l) = σ
(
w (l)x(l−1) + b(l)

)
and f (x ;w , b) = x(L).

Layer 1 Layer L

x = x(0) ×

w(1)

+

b(1)

σ x(1) . . . x(L−1) ×

w(L)

+

b(L)

σ x(L) = f (x ; w, b)

Such a model is a Multi-Layer Perceptron (MLP).
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Note that if σ is an affine transformation, the full MLP is a composition of
affine mappings, and itself an affine mapping.

Consequently:

!
The activation function σ should not be affine. Otherwise the resulting
MLP would be an affine mapping with a peculiar parametrization.
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The two classical activation functions are the hyperbolic tangent

x 7→
2

1 + e−2x
− 1

−1

1

and the rectified linear unit (ReLU, Glorot et al., 2011)

x 7→ max(0, x)

0
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Notes

The hyperbolic tangent was very popular in the
nineties. ReLU got popular in the early 2010s,
and was one of the reason why deep networks
are easier to train.



Universal approximation
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We can approximate any ψ ∈ 𝒞 ([a, b],R) with a linear combination of translated/scaled
ReLU functions.

f (x) = σ(w1x + b1) + σ(w2x + b2) + σ(w3x + b3) + . . .

This is true for other activation functions under mild assumptions.
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Notes

The universal approximation theorem states that
one can approximate a [reasonably regular] func-
tion at any precision with a single hidden layer
given enough hidden units.
The graph illustrates this for a R → R continuous
function using ReLU in the MLP. The blue curve
is a sum of several ReLU functions which have
been translated and scaled so that their sum is
equal to a piece-wise approximation of the target
function ϕ shown in gray.
One assumption on the activation function to
make such an approximation possible is that the
activation should saturate on one side, either
+∞ or −∞.



Extending this result to any ψ ∈ 𝒞 ([0, 1]D ,R) requires a bit of work.

We can approximate the sin function with the previous scheme, and use the density of
Fourier series to get the final result:

∀ϵ > 0, ∃K ,w ∈ RK×D, b ∈ RK, ω ∈ RK, s.t.

max
x∈[0,1]D

|ψ(x)− ω · σ(w x + b)| ≤ ϵ.
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Notes

We can use the previous result for the sin function:

∀A > 0, ϵ > 0, ∃N, (αn, an) ∈ R×R, n = 1, . . . ,N, s.t. max
x∈[−A,A]

∣∣∣∣∣sin(x) −
N∑

n=1

αnσ(x − an)

∣∣∣∣∣ ≤ ϵ.

And the density of Fourier series provides

∀ψ ∈ 𝒞 ([0, 1]D ,R), δ > 0, ∃M, (vm, γm, cm) ∈ RD × R × R,m = 1, . . . ,M,

s.t. max
x∈[0,1]D

∣∣∣∣∣ψ(x) −
M∑

m=1

γm sin(vm · x + cm)

∣∣∣∣∣ ≤ δ.

Combining these two approximations provides the result: ∀ξ > 0, with

δ =
ξ

2
,A = max

1≤m≤M
max

x∈[0,1]D
|vm · x + cm| , and ϵ =

ξ

2
∑

m |γm|

we get, ∀x ∈ [0, 1]D ,∣∣∣∣∣ψ(x) −
M∑

m=1

γm

(
N∑

n=1

αnσ(vm · x + cm − an)

)∣∣∣∣∣
≤

∣∣∣∣∣ψ(x) −
M∑

m=1

γm sin(vm · x + cm)

∣∣∣∣∣︸ ︷︷ ︸
≤ ξ

2

+
M∑

m=1

|γm|

∣∣∣∣∣sin(vm · x + cm) −
N∑

n=1

αnσ(vm · x + cm − an)

∣∣∣∣∣︸ ︷︷ ︸
≤ ξ

2
∑

m |γm|︸ ︷︷ ︸
≤ ξ

2



So we can approximate any continuous function

ψ : [0, 1]D → R

with a one hidden layer perceptron

x 7→ ω · σ(w x + b),

where b ∈ RK , w ∈ RK×D , and ω ∈ RK .

Hidden layer

x ×

w

+

b

σ ·

ω

y

This is the universal approximation theorem.
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!
A better approximation requires a larger hidden layer (larger K), and
this theorem says nothing about the relation between the two.

So this results states that we can make the training error as low as we want by using a
larger hidden layer. It states nothing about the test error.

Deploying MLP in practice is often a balancing act between under-fitting and
over-fitting.
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