Deep learning

3.3. Linear separability and feature design
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The main weakness of linear predictors is their lack of capacity. For
classification, the populations have to be linearly separable.
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Notes

On the left image, it is clear that it does not exist
an hyperplane (i.e. a line) which separates the
two populations.

Another example even more vexing it the “xor”
example (right image). These four data points
are not linearly separable.

As we saw in lecture 2.2. “Over and under fit-
ting”, the capacity of a set of predictors corre-
sponds to its ability to model complex mappings,
and linear models have a low capacity.
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The xor example can be solved by pre-processing the data to make the two populations

linearly separable.
® : (xu,xv) = (Xu, Xv, XuXy).
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Notes

We can use an ad-hoc formula to pre-process the
data. This formula is not trained: it is designed
from prior knowledge about the problem. This
pre-processing is a function of the input vector
which aims at creating a new vector which will
be used as input by the linear predictor.

In the “xor” problem, the four input points are
(0,0), (0,1), (1,0), and (1,1) and are mapped
by ¢ to (0,0,0), (0,1,0), (1,0,0), and (1,1, 1),
which are linearly separable in R3.

So we can now model the “xor” with:

f(x) =o(w-d(x)+b).
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Perceptron
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Notes

In practice, we pre-process all the training points
and then use the perceptron algorithm on it.



This is similar to the polynomial regression. If we have
d:x— (1,X,X2,...,XD)

and
a = (ag,...,ap)

then

D
Z agx? = a - d(x).
d=0

By increasing D, we can approximate any continuous real function on a compact space
(Stone-Weierstrass theorem).

It means that we can make the capacity as high as we want.
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We can apply the same to a more realistic binary classification problem: MNIST's “8"
vs. the other classes with a perceptron.

The original 28 x 28 = 784 features are supplemented with the products of pairs of
features taken at random.
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Notes

We illustrate the use of a pre-processing which  The plot shows the error rate as a function of the
increases the dimension of the data points on  number of features, which is also the dimension
MNIST. Class 1 consists of the images of “8" of the input space after pre-processing.
while class O consists of all the other digits.
The pre-processing consists of:
e Taking the original 784 pixels of the image.
Here, the pixels can be viewed as features.

e The curves starts at 784 on the x axis,
which corresponds to no added product of
pixels. So, we only have the dimension of

. o . the original space, the number of pixels in
o Extending these initial features with a digit

pairwise product of pixels selected at
random among the 784. The pairs are

randomly selected prior to learning, and of e We can see that the more we extend the
course remain the same for both training space with product of pixels, the lower the
and test. training and test errors: Adding more
features made the problem more separable.
X1 X2 |- [ X784 | X4X9 [X11X8| - - - XO9X41
e The gap between train and test errors
.. ; . increases, showing that overfitting gets

Original pixels Products of pixels Worse g g8



Remember the bias-variance tradeoff we saw in 2.3. “Bias-variance dilemma”
E((Y —y)?) = (B(Y) = y)> + V(Y) .
—_—— =
Bias Variance
The right class of models reduces the bias more and increases the variance less.

Beside increasing capacity to reduce the bias, “feature design” may also be a way of
reducing capacity without hurting the bias, or with improving it.

In particular, good features should be invariant to perturbations of the signal known to
keep the value to predict unchanged.
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We can illustrate the use of features with k<-NN on a task with radial symmetry. Using
the radius instead of 2d coordinates allows to cope with label noise.

Training points

Votes (K=11)

. A

Prediction (K=11)

Using 2d coordinates

Using the radius
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Notes

We illustrate the design of feature with a simple
synthetic binary problem:

e The true class of samples is depicted by
the red rings: class 1 is inside the red
areas, and class 0 outside.

o We generate labeled training points with
noise in the labels: some black points
(class 1) are actually outside the red areas,
and some white points (class 0) are inside.

When we apply the K-nearest neighbors algo-
rithm on the original data points the plane, the
number of votes is very noisy, which results in a

prediction which does not reflect the true struc-
ture of the data.

If we have the knowledge that the label of a point
is invariant by rotation around a center point, we
can pre-process the data to give to the predictor
only the distance r to the center point:

®: R*>R
(x,9) = (x = xe)2 + (v — ye)?

The prediction is now much better, although we
have reduce the dimension from R? to R.
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A classical example is the “Histogram of Oriented Gradient” descriptors (HOG), initially
designed for person detection.

Roughly: divide the image in 8 x 8 blocks, compute in each the distribution of edge
orientations over 9 bins.
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Dalal and Triggs (2005) combined them with a SVM, and Dollar et al. (2009) extended
them with other modalities into the “channel features”.
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Notes

Prior to deep learning techniques, common pre-
processing steps consisted in computing several
modalities such as histograms of gradient and
to concatenate them in channels, before feeding
them to standard algorithms.

In this example here, the task is to predict if an
image contains a pedestrian. The gray-level of
a pixel is poorly informative, as cloths, skin, or
background can be dark or light.

However the orientation of edges has a very spe-
cific structure when a person is present. So a
linear SVM, which is a linear predictor, could
achieve very good performance when fed with
the edge orientation statistics of the HOG de-
scriptor.



Many methods (perceptron, SVM, k-means, PCA, etc.) only require to compute
k(x, x") = ®(x) - (x) for any (x, x’).

So one needs to specify x alone, and may keep ® undefined.

This is the kernel trick, which we will not talk about in this course.
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Training a model composed of manually engineered features and a parametric model
such as logistic regression is now referred to as “shallow learning”.

The signal goes through a single processing trained from data.
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