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We can visualize over-fitting for our polynomial regression by generating multiple
training sets 𝒟1, . . . ,𝒟M , training as many models f1, . . . , fM , and computing
empirically the mean and standard deviation of the prediction at every point.

As we will see, when the capacity increases, or the regularization decreases, the
mean of the predicted value gets right on target, but the prediction varies more
across runs.
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Notes

Given the trained models f1, . . . , fM , we can com-
pute an empirical mean prediction at x as

f̄ (x) =
1

M

M∑
m=1

fm(x),

and the empirical variance of the prediction at x
with

σ(x) =
1

M − 1

M∑
m=1

(
f̄ (x) − fm(x)

)2
.
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Notes

The red curve correspond to the “true” structure
of the data we want to fit, it is constant equal
to zero on [0, 0.5] and quadratic on [0.5, 1].
For m = 1, . . . ,M, we generate a training set
𝒟m by taking xm

1 , . . . , xm
n regularly spaced in

[0, 1], and computing each ym
n as f (xm

n ) added
to a random Gaussian noise. Then we fit a poly-
nomial fm of degree D.
Then we can compute for every x the mean and
standard deviation of f1(x), . . . , fM (x).
The blue curve is the mean prediction average
over M = 10000 runs, and the blue area shows

± the standard deviation.
As the degree increases, the prediction (blue
curve) gets more and more aligned with the true
functional (red curve), but the standard devia-
tion increases more and more. A large variance
(or standard deviation) shows the discrepancy
between all the trained models.
Note that for large D, even with M = 10, 000,
the variance is so large that the estimation of the
standard deviation is noisy, resulting in oscilla-
tions on the graph.
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Notes

Same observations as in the previous slide, now
for the weight ρ of the quadratic penalty decreas-
ing instead of D increasing.



We can formalize these observations as follows:

Let x be fixed, y the “true” value associated to it, f ∗ the predictor we learned from the
data-set 𝒟 , and Y = f ∗(x) be the value we predict at x .

If we consider that the training set 𝒟 is a random quantity, then f ∗ is random, and
consequently Y is.
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We have

E𝒟
(
(Y − y)2

)
= E𝒟

(
Y 2 − 2Yy + y2

)
= E𝒟

(
Y 2
)
− 2E𝒟 (Y ) y + y2

= E𝒟
(
Y 2
)
− E𝒟 (Y )2︸ ︷︷ ︸

V𝒟 (Y )

+E𝒟 (Y )2 − 2E𝒟 (Y ) y + y2︸ ︷︷ ︸
(E𝒟 (Y )−y)2

= (E𝒟 (Y )− y)2︸ ︷︷ ︸
Bias

+V𝒟 (Y )︸ ︷︷ ︸
Variance

This is the bias-variance decomposition:

• the bias term quantifies how much the model fits the data on average,

• the variance term quantifies how much the model changes across data-sets.

(Geman and Bienenstock, 1992)
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From this comes the bias-variance tradeoff:

10−7 10−6 10−5 10−4 10−3 10−2 10−1

Bias

10−3

10−2

V
ar

ia
n

ce

D

ρ

Reducing the capacity makes f ∗ fit the data less on average, which increases the bias
term. Increasing the capacity makes f ∗ vary a lot with the training data, which
increases the variance term.
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Notes

The plot shows the variance as a function of the
bias in the two previous setup. The green curve
when varying D, and the red curve when varying
ρ.
We see that when we decrease the bias (i.e. the
model does better on average), we increase the
variance (i.e. the model fluctuates more between
data-sets and generalizes less).



Is all this probabilistic?
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Conceptually model-fitting and regularization can be interpreted as Bayesian inference.

This approach consists of modeling the parameters A of the model themselves as
random quantities following a prior distribution µA.

By looking at the data 𝒟 , we can estimate a posterior distribution for the said
parameters,

µA(α | 𝒟 = d) ∝ µ𝒟 (d | A = α)µA(α),

and from that their most likely values.

So instead of a penalty term, we define a prior distribution, which is usually more
intellectually satisfying.

François Fleuret Deep learning / 2.3. Bias-variance dilemma 8 / 10



For instance, consider a polynomial model with Gaussian prior, that is

∀n, Yn =
D∑

d=0

Ad X d
n +∆n,

where
∀d , Ad ∼ 𝒩 (0, ξ), ∀n, Xn ∼ µX , ∆n ∼ 𝒩 (0, σ)

all independent.

For clarity, let A = (A0, . . . ,AD) and α = (α0, . . . , αD).

Remember that 𝒟 = {(X1,Y1), . . . , (XN ,YN)} is the (random) training set and
d = {(x1, y1), . . . , (xN , yN)} is a realization.
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log µA(α | 𝒟 = d)

= log
µ𝒟 (d | A = α)µA(α)

µ𝒟 (d)

= log µ𝒟 (d | A = α) + log µA(α)− logZ

= log
∏
n

µ(xn, yn | A = α) + log µA(α)− logZ

= log
∏
n

µ(yn | Xn = xn,A = α) µ(xn | A = α)︸ ︷︷ ︸
=µ(xn)

+ log µA(α)− logZ

= log
∏
n

µ(yn | Xn = xn,A = α) + log µA(α)− logZ ′

= − 1

2σ2

∑
n

(
yn −

∑
d

αdx
d
n

)2

︸ ︷︷ ︸
Gaussian noise on Y

− 1

2ξ2

∑
d

α2
d︸ ︷︷ ︸

Gaussian prior on A

− logZ ′′.

Taking ρ = σ2/ξ2 gives the penalty term of the previous slides.

Regularization seen through that prism is intuitive: The stronger the prior, the more
evidence you need to deviate from it.

François Fleuret Deep learning / 2.3. Bias-variance dilemma 10 / 10



References

S. Geman and E. Bienenstock. Neural networks and the bias/variance dilemma. Neural
Computation, 4:1–58, 1992.


	Is all this probabilistic?
	References

