
Deep learning

11.4. Model persistence and checkpoints

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

Saving and loading models is key to use models trained previously.

It also allows to implement checkpoints which keep track of the state during
training and allow to either restart after an unexpected interruption, or
modulate meta-parameters manually.

The underlying operation is serialization, that is the transcription of an arbitrary
object into a sequence of bytes [that can be saved to disk].

François Fleuret Deep learning / 11.4. Model persistence and checkpoints 1 / 9

Notes

In that context “persistence” refers to the prop-
erty of continuing to exist when the software
stops. It is a key element of large model training
which may span over weeks.

The main PyTorch methods for serializing are torch.save(obj, filename) and
torch.load(filename).

>>> x = 34
>>> torch.save(x, 'x.pth')
>>> y = torch.load('x.pth')
>>> y
34

>>> z = { 'a': torch.randint(10, (2, 3)), 'b': nn.Linear(10, 20) }
>>> torch.save(z, 'z.pth')
>>> w = torch.load('z.pth')
>>> w
{'a': tensor([[4, 4, 4],

[8, 4, 1]]), 'b': Linear(in_features=10, out_features=20, bias=True)}

François Fleuret Deep learning / 11.4. Model persistence and checkpoints 2 / 9

One can save directly a full model like this, including arbitrary fields

>>> x = nn.Sequential(nn.Linear(3, 10), nn.ReLU(), nn.Linear(10, 1))
>>> x.blah = 14
>>> torch.save(x, 'model.pth')
>>>
>>> z = torch.load('model.pth')
>>> z(torch.randn(2, 3))
tensor([[0.0665],

[0.2116]])
>>> z.blah
14

François Fleuret Deep learning / 11.4. Model persistence and checkpoints 3 / 9

Saving a full model with torch.save() bounds the saved quantities to the specific
class implementation, and may break after changes in the code.

The suggested policy is to save the state dictionary alone, as provided by
Module.state_dict(), which encompasses Parameters and buffers such as
batchnorm running estimates, etc.

Additionally

• Tensors are saved with their locations (CPU, or GPU), and will be loaded in the
same configuration,

• in your Modules, buffers have to be identified with register_buffer,

• loaded models are in train mode by default,

• optimizers have a state too (momentum, Adam).

François Fleuret Deep learning / 11.4. Model persistence and checkpoints 4 / 9

A checkpoint is a persistent object that keeps the global state of the training: model
and optimizer. In the following example (1) we load it when we start if it exists, and (2)
we save it at every epoch.

nb_epochs_finished = 0
model = Net()
optimizer = torch.optim.SGD(model.parameters(), lr = lr)

checkpoint_name = 'checkpoint.pth'

try:
checkpoint = torch.load(checkpoint_name)
nb_epochs_finished = checkpoint['nb_epochs_finished']
model.load_state_dict(checkpoint['model_state'])
optimizer.load_state_dict(checkpoint['optimizer_state'])
print(f'Checkpoint loaded with {nb_epochs_finished} epochs finished.')

except FileNotFoundError:
print('Starting from scratch.')

except:
print('Error when loading the checkpoint.')
exit(1)

François Fleuret Deep learning / 11.4. Model persistence and checkpoints 5 / 9

Notes

This code tries to load a dictionary from a file
checkpoint.pth:

• if it succeeds, it restores from it the
number of epochs, the model state, and
the optimizer states,

• if the file is not found, the training will
start from scratch, and

• otherwise, the code exits.

The next slide shows how the checkpoint is saved.

for k in range(nb_epochs_finished, nb_epochs):
acc_loss = 0

for input, targets in zip(train_input.split(batch_size),
train_targets.split(batch_size)):

output = model(input)
loss = criterion(output, targets)
acc_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()

print(k, acc_loss)

checkpoint = {
'nb_epochs_finished': k + 1,
'model_state': model.state_dict(),
'optimizer_state': optimizer.state_dict()

}
torch.save(checkpoint, checkpoint_name)

François Fleuret Deep learning / 11.4. Model persistence and checkpoints 6 / 9

If we killall python during training

fleuret@elk:/tmp/ ./tinywithcheckpoint.py
Starting from scratch.
0 161.2404215920251
1 35.50377965264488
2 24.43254833246465
3 18.57419647696952
4 14.582882737944601
Killed

and re-start

fleuret@elk:/tmp/ ./tinywithcheckpoint.py
Checkpoint loaded with 5 epochs finished.
5 11.396404800716482
6 8.944935847055604
7 7.116929043420896
8 5.463898817846712
9 4.41012461569494
test_error 1.01% (101/10000)

François Fleuret Deep learning / 11.4. Model persistence and checkpoints 7 / 9

Notes

If for some reason the training procedure is inter-
rupted, re-running the same code will load the
model where it was as well as the states.
Note here that the loss at epoch 5 after re-start
is consistent with the loss at epoch 4.

!
Since a model is saved with information about the CPU/GPUs where
each Storage is located there may be issues if the model is loaded on a
different hardware configuration.

François Fleuret Deep learning / 11.4. Model persistence and checkpoints 8 / 9

For instance, if we save a model located on a GPU:

>>> x = torch.nn.Linear(10, 4)
>>> x.to('cuda')
Linear(in_features=10, out_features=4, bias=True)
>>> torch.save(x, 'x.pth')

and load it on a machine without GPU:

>>> x = torch.load('x.pth')
Traceback (most recent call last):
/.../
RuntimeError: Attempting to deserialize object on a CUDA device but
torch.cuda.is_available() is False. If you are running on a CPU-only
machine, please use torch.load with map_location=torch.device('cpu')
to map your storages to the CPU.

This can be fixed by specifying at load time how to relocate storages:

>>> x = torch.load('x.pth', map_location = 'cpu')
Linear(in_features=10, out_features=4, bias=True)

François Fleuret Deep learning / 11.4. Model persistence and checkpoints 9 / 9

