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Auto-regression methods model components of a signal serially, each one
conditionally to the ones already modeled.

They rely on the chain rule from probability theory: given X1, . . . ,XT random
variables, we have

∀x1, . . . , xT , P(X1 = x1, . . . ,XT = xT ) =

P(X1 = x1)P(X2 = x2 | X1 = x1) . . .P(XT = xT | X1 = x1, . . . ,XT−1 = xT−1).

Deep neural networks are a fitting class of models for such conditional densities
when dealing with large dimension signal (Larochelle and Murray, 2011).
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Given a sequence of random variables X1, . . . ,XT on R, we can represent a
conditioning event of the form

Xt(1) = x1, . . . ,Xt(N) = xN

with two tensors of dimension T : the first a Boolean mask stating which
variables are conditioned, and the second the actual conditioning values.

E.g., with T = 5

Event Mask tensor Value tensor

{X2 = 3} [0, 1, 0, 0, 0] [0, 3, 0, 0, 0]

{X1 = 1,X2 = 2,X3 = 3,X4 = 4,X5 = 5} [1, 1, 1, 1, 1] [1, 2, 3, 4, 5]

{X5 = 50,X2 = 20} [0, 1, 0, 0, 1] [0, 20, 0, 0, 50]
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In what follows, we will consider only finite distributions over C real values.

Hence we can model a conditional distribution with a mapping that maps a pair
mask / known values to a distribution for the next value of the sequence:

f : {0, 1}Q × RQ → RC ,

where the C output values can be either probabilities, or as we will prefer, logits.

This can be generalized beyond categorical distributions by mapping to
parameters of any distribution.
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Given such a model and a sampling procedure sample, the generative process
for a full sequence is

x1 ← sample (f ({}))
x2 ← sample (f ({X1 = x1}))
x3 ← sample (f ({X1 = x1,X2 = x2}))

. . .

xT ← sample (f ({X1 = x1,X2 = x2, . . . ,XT−1 = xT−1}))
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Notes

A sampling procedure takes as input the proba-
bilities (or logits) output by the model (a tensor

in RC ) and outputs a value sampled randomly
according to the provided probabilities or logits.



For instance, with C = 3 and T = 5, we could have:

{} [[ 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0 ]]

Mask and values

[ 0.1, 0.5, 0.4 ]

Distribution

f
2

sample

{X1 = 2} [[ 1, 0, 0, 0, 0 ]
[ 2, 0, 0, 0, 0 ]]

[ 0.6, 0.2, 0.2 ]
f

1
sample

{X1 = 2, X2 = 1} [[ 1, 1, 0, 0, 0 ]
[ 2, 1, 0, 0, 0 ]]

[ 0.1, 0.0, 0.9 ]
f

2
sample

{X1 = 2, X2 = 1, X3 = 2} [[ 1, 1, 1, 0, 0 ]
[ 2, 1, 2, 0, 0 ]]

[ 0.5, 0.2, 0.3 ] . . .
f sample
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The package torch.distributions provides the necessary tools to sample from a
variety of distributions.

>>> l = torch.tensor([ log(0.8), log(0.1), log(0.1) ])
>>> dist = torch.distributions.categorical.Categorical(logits = l)
>>> s = dist.sample((10000,))
>>> (s.view(-1, 1) == torch.arange(3).view(1, -1)).float().mean(0)
tensor([0.8037, 0.0988, 0.0975])

Sampling can also be done in batch

>>> l = torch.tensor([[ log(0.90), log(0.10) ],
... [ log(0.50), log(0.50) ],
... [ log(0.25), log(0.75) ],
... [ log(0.01), log(0.99) ]])
>>> dist = torch.distributions.categorical.Categorical(logits = l)
>>> dist.sample((8,))
tensor([[0, 1, 1, 1],

[0, 1, 1, 1],
[0, 0, 1, 1],
[0, 1, 0, 1],
[1, 0, 1, 1],
[0, 1, 1, 1],
[0, 1, 1, 1],
[0, 0, 1, 1]])
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Notes

In the batch case, the sampler is parameterized
by a tensor of size

M1 × · · · × MK × C ,

that represents

M1 × · · · × MK

vectors of logits over C classes.
The sampling itself takes as input a shape
(N1, . . . ,NL) and returns a tensor of size

N1 × · · · × NL × M1 × · · · × MK

of values in {0, . . . ,C − 1}.



With a finite distribution and the output values interpreted as logits, training consists of
maximizing the likelihood of the training samples, hence minimizing

ℒ (f ) = −
∑
n

∑
t

log p̂(Xt = xn,t | X1 = xn,1, . . . ,Xt−1 = xn,t−1)

=
∑
n

∑
t

𝓁
(
f ((1, . . . , 1, 0, . . . , 0), (xn,1, . . . , xn,t−1, 0, . . . , 0)), xn,t

)
where 𝓁 is the cross-entropy.
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In practice, for each batch, we sample a position to predict for each sample at random,
from which we build the masks, conditioning values, and target values.

[[ 3, 1, 8, 1, 0, 3 ],
[ 2, 3, 0, 9, 6, 5 ],
[ 7, 1, 5, 7, 3, 1 ],
[ 6, 0, 2, 3, 1, 9 ]]

Training Sequences

[[ 1, 1, 0, 0, 0, 0 ],
[ 1, 1, 1, 1, 1, 0 ],
[ 1, 1, 1, 0, 0, 0 ],
[ 1, 0, 0, 0, 0, 0 ]]

Input (masks)

[[ 3, 1, 0, 0, 0, 0 ],
[ 2, 3, 0, 9, 6, 0 ],
[ 7, 1, 5, 0, 0, 0 ],
[ 6, 0, 0, 0, 0, 0 ]]

Input (values)

[ 8,
5,
7,
0 ]

Targets
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Notes

The training can be done with mini-batches which
are generated as follows:
We start from a tensor of training sequences,
and pick the position of the value to predict at
random in each, depicted with the red circles.
We create a mask and a value tensor with 1s and
values in each sequence up to the value before
the value to predict and zeros after.
We create the target vector with the values to
predict for each sequence.



Consider a toy problem, where sequences from {1, . . . ,C}T are split in two at a random
position, and are linear in both parts, with slopes ∼ 𝒰 ([−1, 1]).

∼ 𝒰 ({1, . . . ,T})

T

C = 2T

Values are re-centered and discretized into 2T values.
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Notes

Each sequence is of length T , and take values in
{0, . . . 2T − 1} hence C = 2T different possible
values at each point.
A sequence starts at the middle value, x1 = T .
The sequence behaves linearly with a slope in
[−1, 1] until a “cut” point at which it re-starts
again at value T with a new slope in [−1, 1].
This split point is chosen uniformly in [1,T ].
The sketch shows an example where the two
slopes are of opposite signs, but they may be of
same sign.



Some train sequences

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

0 5 10 15 20 25 30

10

20

30

40

50

François Fleuret Deep learning / 10.1. Auto-regression 10 / 25

Notes

This toy example exhibits 2 interesting features:

• a macro structure (the cut), and

• at every point, a local affine structure.



Model

class Net(nn.Module):
def __init__(self, nb_values):

super().__init__()

self.features = nn.Sequential(
nn.Conv1d(2, 32, kernel_size = 5),
nn.ReLU(),
nn.MaxPool1d(2),
nn.Conv1d(32, 64, kernel_size = 5),
nn.ReLU(),
nn.MaxPool1d(2),
nn.ReLU(),

)

self.fc = nn.Sequential(
nn.Linear(320, 200),
nn.ReLU(),
nn.Linear(200, nb_values)

)

def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
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Notes

Me use a standard convolutional network. Note
the 1d suffix for 1d modules functions, as opposed
to 2d for images.
The input to the network has two channels: one
for the mask, and one for the value tensor.
The output of the model is a tensor of size speci-
fied with the argument nb_values.



Training loop

for sequences in train_sequences.split(batch_size):
nb = sequences.size(0)

# Select a random index in each sequence, this is our targets
idx = torch.randint(len, (nb, 1), device = sequences.device)
targets = sequences.gather(1, idx).view(-1)

# Create masks and values accordingly
tics = torch.arange(len, device = sequences.device).view(1, -1).expand(nb, -1)
masks = (tics < idx.expand(-1, len)).float()
values = (sequences.float() - mean) / std * masks

# Make masks and values one-channel and concatenate them along
# channels to make the input
input = torch.cat((masks.unsqueeze(1), values.unsqueeze(1)), 1)

# Compute the loss and make the gradient step
output = model(input)
loss = cross_entropy(output, targets)

optimizer.zero_grad()
loss.backward()
optimizer.step()
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Notes

gather gets in one single tensor the values at the
indexes idx picked to predict.



Synthesis

nb = 25
generated = torch.zeros(nb, len, device = device, dtype = torch.int64)
tics = torch.arange(len, device = device).view(1, -1).expand(nb, -1)

for t in range(len):
masks = (tics < t).float()
values = (generated.float() - mean) / std * masks
input = torch.cat((masks.unsqueeze(1), values.unsqueeze(1)), 1)
output = model(input)
dist = torch.distributions.categorical.Categorical(logits = output)
generated[:, t] = dist.sample()
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Notes

To synthetize one sequence, components are gen-
erated one after the other for all the sequences
in parallel.
At each time step, the mask and the value tensors
are created from the time step and the values
already generated stored in generated, the values
at the current time step are drawn from the
distributions and stored.



Some generated sequences
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Notes

The results of the generated sequences are quite
satisfying. The model learned that there is a cut,
and the both parts before and after are linear.
The model was able to leverage the convolutional
structure of the network:

• to predict that, given what had been
generated so far, the next value has to be
“aligned”,

• to predict that, if there were no cut until a
certain point, it should break the first
pattern.



Image auto-regression
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The exact same auto-regressive approach generalizes to any tensor shape, as long as a
visiting order of the coefficients is provided.

For instance, for images, we can visit pixels in the “raster scan order” corresponding to
the standard mapping in memory, top-to-bottom, left-to-right.

image_masks = torch.empty(16, 1, 6, 6)
for k in range(image_masks.size(0)):

sequence_mask = torch.arange(1 * 6 * 6) < k
image_masks[k] = sequence_mask.float().view(1, 6, 6)
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Some of the MNIST train images
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Notes

MNIST samples are 28 × 28 gray-scale images.
Pixels are in [0, 255]. For auto-regression, such a
28 × 28 image will be interpreted as a sequence
of length 784, corresponding to the pixels visited
from top to bottom, and from left to right.



We define two functions to serialize the image tensors into sequences

def seq2tensor(s):
return s.reshape(-1, 1, 28, 28)

def tensor2seq(s):
return s.reshape(-1, 28 * 28)

François Fleuret Deep learning / 10.1. Auto-regression 18 / 25

Notes

In practice, we need a way to go from images to
sequences, and from sequences to images.
seq2tensor takes as input a tensor of dimension
N × 784, that represents N sequences of length
784, and outputs a tensor of size N×1×28×28
corresponding to a standard batch of MNIST
image.
tensor2seq does the opposite and transforms a
batch of N MNIST images N× 1× 28× 28, into
a tensor of N sequences N × 784.



Model

class LeNetMNIST(nn.Module):
def __init__(self, nb_classes):

super().__init__()

self.features = nn.Sequential(
nn.Conv2d(2, 32, kernel_size = 3),
nn.MaxPool2d(kernel_size = 2),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size = 5),
nn.ReLU(),

)

self.fc = nn.Sequential(
nn.Linear(64 * 81, 512),
nn.ReLU(),
nn.Linear(512, nb_classes)

)

def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
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Notes

The model used here is a standard convnet with
the association of convolutions, pooling, and
ReLU, followed by two fully connected layers.
The main difference with a LeNet is that the
input has two channels:

• one for the mask, which indicates the
pixels already known, and

• the other for the actual pixel values.

Here, the number of classes is the number of gray
levels (from 0 to 255) that the component of the
sequence can take.



Training loop

for data in train_input.split(args.batch_size):
# Make 1d sequences from the images
sequences = tensor2seq(data)
nb, len = sequences.size(0), sequences.size(1)

# Select a random index in each sequence, this is our targets
idx = torch.randint(len, (nb, 1), device = device)
targets = sequences.gather(1, idx).view(-1)

# Create masks and values accordingly
tics = torch.arange(len, device = device).view(1, -1).expand(nb, -1)
masks = seq2tensor((tics < idx.expand(-1, len)).float())
values = (data.float() - mu) / std * masks

# Make the input, set the mask and values as two channels
input = torch.cat((masks, values), 1)

# Compute the loss and make the gradient step
output = model(input)
loss = cross_entropy(output, targets)

optimizer.zero_grad()
loss.backward()
optimizer.step()
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Notes

The training goes as follows:

• The input images are first converted to
sequences to easily generate the masks:
the first values will be 1, while the last will
be 0.

• The value tensor is also created by zeroing
the locations of the pixels which are 0 in
the masks.

• Both the masks and the value tensors are
then converted to an image shape with
seq2tensor to properly feed the convnet.



Synthesis

nb = 48
generated = torch.zeros((nb,) + train_input.shape[1:],

device = device, dtype = torch.int64)
sequences = tensor2seq(generated)
tics = torch.arange(sequences.size(1), device = device).view(1, -1).expand(nb, -1)

for t in range(sequences.size(1)):
masks = seq2tensor((tics < t).float())
values = (seq2tensor(sequences).float() - mu) / std * masks
input = torch.cat((masks, values), 1)
output = model(input)
dist = torch.distributions.categorical.Categorical(logits = output)
sequences[:, t] = dist.sample()
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Notes

The synthesis procedure is very similar to the one
in the toy example.



Some generated images
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Notes

Although not close to state-of-the-art results,
these generated images are satisfying given the
simplicity of the model.
The model obviously captured main aspects of
the density to be modeled. The overall shape is
properly captured: a dark writing in the middle
while nothing is drawn around it. Some generated
images truly look like real digits.



Masks, generated pixels so far, and posterior on the next pixel to generate (red dot), as
predicted by the model (logscale). White is 0 and black is 255.

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

0 50 100 150 200 250
10−10

10−8

10−6

10−4

10−2

100

François Fleuret Deep learning / 10.1. Auto-regression 23 / 25

Notes

Each group of three images show:

• Left: the mask. In black the pixels already
generated.

• Middle: the pixel sampled so far. The red
dot is the location of the pixel which we
want to sample next.

• Right: the distribution predicted by the
model at he position marked by the red
dot, given the mask and the values
generated so far. The x axis range from 0
to 255 which correspond to the gray level.

These results confirm the proper behavior of the
model: When a pixel should “naturally” be white,
because it has no black neighbor on its left or
above, and is closer to the frame, the distribution
is heavily biased toward white values. When it
should extend an existing black trace above, the
distribution shifts toward dark values.



The same generative process can be used for in-painting, by starting the process with
available pixel values.

Original Input Several synthesis
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Notes

In-painting is the process to filling pixel values
which have been removed. The in-painting algo-
rithm has access to the rest of the pixels. Here,
the pixels were removed in the gray patch.
The main difference with the previous situation is
that we do not generate the image from scratch,
but we start from a part of a true digit, in this
case half of the image, the first fourteen rows.
The generated result are not perfect but often
have a consistent structure.



Some remarks:

• The index ordering for the sampling is a design decision. It can be fixed during
train and test, or be adaptive.

• Even when there is a clear metric structure on the value space, best results are
obtained with cross-entropy over a discretization of it.

This is due in large part to the ability of categorical distributions and cross-entropy
to deal with exotic posteriors, in particular multi-modal.

• The cross entropy for a sample is 𝓁n = − log p̂(yn) hence e𝓁n = 1
p̂(yn)

.

If the predicted posterior was uniform on N values, this loss value would
correspond to N = e𝓁n . This is the perplexity and is often monitored as a more
intuitive quantity.
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