
Deep learning

1.6. Tensor internals

François Fleuret

https://fleuret.org/dlc/

https://fleuret.org/dlc/

A tensor is a view of a [part of a] storage, which is a low-level 1d vector.

>>> x = torch.zeros(2, 4)
>>> x.storage()
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

[torch.FloatStorage of size 8]
>>> q = x.storage()
>>> q[4] = 1.0
>>> x
tensor([[0., 0., 0., 0.],

[1., 0., 0., 0.]])

François Fleuret Deep learning / 1.6. Tensor internals 1 / 4

The first coefficient of a tensor is the one at storage_offset() in storage().

Incrementing index k by 1 move by stride(k) elements in the storage.

E.g. in a 2d tensor, incrementing the row index moves by stride(0) in the
storage, and incrementing the column index moves by stride(1).

>>> q = torch.arange(0., 20.).storage()
>>> x = torch.empty(0).set_(q, storage_offset = 5, size = (3, 2), stride = (4, 1))
>>> x
tensor([[5., 6.],

[9., 10.],
[13., 14.]])

x[0,0] x[0,1] x[1,0] x[1,1] x[2,0] x[2,1]

offset stride(0) stride(0)

stride(1) stride(1) stride(1)

q = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

François Fleuret Deep learning / 1.6. Tensor internals 2 / 4

Notes

The offset is the location of the first coefficient
of the tensor in the storage.
The stride is the number of memory elements
that should be skipped to go one element the
following one in that dimension.
On the illustration, tensor x starts at element 5
of the storage.
We move along dimension 0 by jumping of 4 ele-
ments in memory:

• x[1, 0] is “4 elements after” x[0, 0];

• x[2, 0] is “4 elements after” x[1, 0];

• x[1, 1] is “4 elements after” x[0, 1];

• etc.

We move along dimension 1 by jumping of 1 ele-
ment in memory:

• x[0, 1] is “1 element after” x[0, 0];

• x[1, 1] is “1 element after” x[1, 0];

• etc.

We can explicitly create different “views” of the same storage

>>> n = torch.linspace(1, 4, 4)
>>> n
tensor([1., 2., 3., 4.])
>>> torch.tensor(0.).set_(n.storage(), 1, (3, 3), (0, 1))
tensor([[2., 3., 4.],

[2., 3., 4.],
[2., 3., 4.]])

>>> torch.tensor(0.).set_(n.storage(), 1, (2, 4), (1, 0))
tensor([[2., 2., 2., 2.],

[3., 3., 3., 3.]])

This is in particular how transpositions and broadcasting are implemented.

>>> x = torch.empty(100, 100)
>>> x.stride()
(100, 1)
>>> y = x.t()
>>> y.stride()
(1, 100)

François Fleuret Deep learning / 1.6. Tensor internals 3 / 4

Notes

Replication is achieved with a stride of 0.
The main idea of functions like view, narrow,
transpose, etc. and of operations involving
broadcasting is to never replicate data in memory,
but to “play” with the offsets and strides of the
underlying storage.

This organization explains the following (maybe surprising) error

>>> x = torch.empty(100, 100)
>>> x.t().view(-1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
RuntimeError: invalid argument 2: view size is not compatible with
input tensor's size and stride (at least one dimension spans across
two contiguous subspaces). Call .contiguous() before .view()

x.t() shares x’s storage and cannot be “flattened” to 1d.

This can be fixed with contiguous(), which returns a contiguous version of the tensor,
making a copy if needed.

The function reshape() combines view() and contiguous().

François Fleuret Deep learning / 1.6. Tensor internals 4 / 4

