From: François Fleuret Date: Tue, 26 Mar 2024 18:55:44 +0000 (+0100) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=ffeb45668535e2c338feb5dfb50c4d0ab22ae2a9;p=pytorch.git Update. --- diff --git a/bit_mlp.py b/bit_mlp.py index 90409f2..6f7f92e 100755 --- a/bit_mlp.py +++ b/bit_mlp.py @@ -116,33 +116,40 @@ for linear_layer in errors.keys(): ###################################################################### - errors[linear_layer].append((nb_hidden, test_error)) + errors[linear_layer].append( + (nb_hidden, test_error * 100, acc_train_loss / train_input.size(0)) + ) import matplotlib.pyplot as plt -fig = plt.figure() -fig.set_figheight(6) -fig.set_figwidth(8) -ax = fig.add_subplot(1, 1, 1) +def save_fig(filename, ymax, ylabel, index): + fig = plt.figure() + fig.set_figheight(6) + fig.set_figwidth(8) -ax.set_ylim(0, 1) -ax.spines.right.set_visible(False) -ax.spines.top.set_visible(False) -ax.set_xscale("log") -ax.set_xlabel("Nb hidden units") -ax.set_ylabel("Test error (%)") + ax = fig.add_subplot(1, 1, 1) -X = torch.tensor([x[0] for x in errors[nn.Linear]]) -Y = torch.tensor([x[1] for x in errors[nn.Linear]]) -ax.plot(X, Y, color="gray", label="nn.Linear") + ax.set_ylim(0, ymax) + ax.spines.right.set_visible(False) + ax.spines.top.set_visible(False) + ax.set_xscale("log") + ax.set_xlabel("Nb hidden units") + ax.set_ylabel(ylabel) -X = torch.tensor([x[0] for x in errors[QLinear]]) -Y = torch.tensor([x[1] for x in errors[QLinear]]) -ax.plot(X, Y, color="red", label="QLinear") + X = torch.tensor([x[0] for x in errors[nn.Linear]]) + Y = torch.tensor([x[index] for x in errors[nn.Linear]]) + ax.plot(X, Y, color="gray", label="nn.Linear") -ax.legend(frameon=False, loc=1) + X = torch.tensor([x[0] for x in errors[QLinear]]) + Y = torch.tensor([x[index] for x in errors[QLinear]]) + ax.plot(X, Y, color="red", label="QLinear") -filename = f"bit_mlp.pdf" -print(f"saving {filename}") -fig.savefig(filename, bbox_inches="tight") + ax.legend(frameon=False, loc=1) + + print(f"saving {filename}") + fig.savefig(filename, bbox_inches="tight") + + +save_fig("bit_mlp_err.pdf", ymax=15, ylabel="Test error (%)", index=1) +save_fig("bit_mlp_loss.pdf", ymax=1.25, ylabel="Train loss", index=2)