From: François Fleuret Date: Tue, 4 Jul 2023 15:26:24 +0000 (+0200) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=fd2166de6350fc3f2b3fdb90849115574e3ae843;p=picoclvr.git Update. --- diff --git a/main.py b/main.py index b774fce..324aeba 100755 --- a/main.py +++ b/main.py @@ -1023,29 +1023,33 @@ class TaskExpr(Task): self.char2id = dict( [ (c, n) - for n, c in enumerate(set("".join(train_sequences + test_sequences))) + for n, c in enumerate(set("#"+"".join(train_sequences + test_sequences))) ] ) - self.id2char = dict([(n, c) for n, c in self.char2id.items()]) + self.id2char = dict([(n, c) for c, n in self.char2id.items()]) len_max = max([len(x) for x in train_sequences + test_sequences]) self.train_input = torch.cat( [ torch.tensor( - [char2id(c) for c in s + " " * (len_max - len(s))] - for s in train_sequences + [ + [self.char2id[c] for c in s + "#" * (len_max - len(s))] + for s in train_sequences + ] ) ], 0, - ) + ).to(device) self.test_input = torch.cat( [ torch.tensor( - [char2id(c) for c in s + " " * (len_max - len(s))] - for s in test_sequences + [ + [self.char2id[c] for c in s + "#" * (len_max - len(s))] + for s in test_sequences + ] ) ], 0, - ) + ).to(device) self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1 def batches(self, split="train", nb_to_use=-1, desc=None): @@ -1064,26 +1068,21 @@ class TaskExpr(Task): return self.nb_codes def produce_results(self, n_epoch, model): - # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! with torch.autograd.no_grad(): t = model.training model.eval() def compute_nb_correct(input): result = input.clone() - stack.remove_popped_values(result, self.nb_stacks, self.nb_digits) - ar_mask = (result != input).long() + space = self.char2id["#"] + ar_mask = (result == space).long().cumsum(dim=1).clamp(max=1) + result = (1 - ar_mask) * result + space * ar_mask masked_inplace_autoregression( model, self.batch_size, result, ar_mask, device=self.device ) - errors = ((result != input).long() * ar_mask).reshape( - -1, 1 + self.nb_digits - ) - ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits) - - nb_total = ar_mask.max(1).values.sum() - nb_correct = nb_total - errors.max(1).values.sum() + nb_total = ar_mask.sum() + nb_correct = ((input == result).long() * ar_mask).sum() return nb_total, nb_correct @@ -1095,21 +1094,20 @@ class TaskExpr(Task): ############################################################## # Log a few generated sequences - input = self.test_input[:10, : 12 * (1 + self.nb_digits)] + input = self.test_input[:10] result = input.clone() - stack.remove_popped_values(result, self.nb_stacks, self.nb_digits) - ar_mask = (result != input).long() + space = self.char2id["#"] + ar_mask = (result == space).long().cumsum(dim=1).clamp(max=1) + result = (1 - ar_mask) * result + space * ar_mask for n in range(result.size(0)): - log_string( - f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}" - ) + s = "".join([self.id2char[k.item()] for k in result[n]]) + log_string(f"test_before {s}") masked_inplace_autoregression( model, self.batch_size, result, ar_mask, device=self.device ) for n in range(result.size(0)): - log_string( - f"test_after {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}" - ) + s = "".join([self.id2char[k.item()] for k in result[n]]) + log_string(f"test_after {s}") ############################################################## model.train(t)