From: Francois Fleuret Date: Sun, 14 Aug 2022 07:50:41 +0000 (+0200) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=f419d073353e4b468eeb0a4fc82dee37e447b341;p=pytorch.git Update. --- diff --git a/minidiffusion.py b/minidiffusion.py index 2c54d19..6fd8564 100755 --- a/minidiffusion.py +++ b/minidiffusion.py @@ -18,10 +18,14 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def sample_gaussian_mixture(nb): p, std = 0.3, 0.2 - result = torch.empty(nb, 1).normal_(0, std) + result = torch.randn(nb, 1) * std result = result + torch.sign(torch.rand(result.size()) - p) / 2 return result +def sample_ramp(nb): + result = torch.min(torch.rand(nb, 1), torch.rand(nb, 1)) + return result + def sample_two_discs(nb): a = torch.rand(nb) * math.pi * 2 b = torch.rand(nb).sqrt() @@ -35,8 +39,9 @@ def sample_two_discs(nb): def sample_disc_grid(nb): a = torch.rand(nb) * math.pi * 2 b = torch.rand(nb).sqrt() - q = torch.randint(5, (nb,)) / 2.5 - 2 / 2.5 - r = torch.randint(5, (nb,)) / 2.5 - 2 / 2.5 + N = 4 + q = (torch.randint(N, (nb,)) - (N - 1) / 2) / ((N - 1) / 2) + r = (torch.randint(N, (nb,)) - (N - 1) / 2) / ((N - 1) / 2) b = b * 0.1 result = torch.empty(nb, 2) result[:, 0] = a.cos() * b + q @@ -59,6 +64,7 @@ def sample_mnist(nb): samplers = { 'gaussian_mixture': sample_gaussian_mixture, + 'ramp': sample_ramp, 'two_discs': sample_two_discs, 'disc_grid': sample_disc_grid, 'spiral': sample_spiral, @@ -179,7 +185,7 @@ train_mean, train_std = train_input.mean(), train_input.std() # Model if train_input.dim() == 2: - nh = 64 + nh = 256 model = nn.Sequential( nn.Linear(train_input.size(1) + 1, nh), @@ -197,6 +203,8 @@ elif train_input.dim() == 4: model.to(device) +print(f'nb_parameters {sum([ p.numel() for p in model.parameters() ])}') + ###################################################################### # Train @@ -228,7 +236,7 @@ for k in range(args.nb_epochs): ema.step() - if k%10 == 0: print(f'{k} {acc_loss / train_input.size(0)}') + print(f'{k} {acc_loss / train_input.size(0)}') ema.copy() @@ -281,18 +289,20 @@ if train_input.dim() == 2: x = generate((1000, 2), model) - ax.set_xlim(-1.25, 1.25) - ax.set_ylim(-1.25, 1.25) + ax.set_xlim(-1.5, 1.5) + ax.set_ylim(-1.5, 1.5) ax.set(aspect = 1) - - d = train_input[:x.size(0)].detach().to('cpu').numpy() - ax.scatter(d[:, 0], d[:, 1], - color = 'lightblue', label = 'Train') + ax.spines.right.set_visible(False) + ax.spines.top.set_visible(False) d = x.detach().to('cpu').numpy() ax.scatter(d[:, 0], d[:, 1], facecolors = 'none', color = 'red', label = 'Synthesis') + d = train_input[:x.size(0)].detach().to('cpu').numpy() + ax.scatter(d[:, 0], d[:, 1], + s = 1.0, color = 'blue', label = 'Train') + ax.legend(frameon = False, loc = 2) filename = f'diffusion_{args.data}.pdf'