From: François Fleuret Date: Thu, 20 Jun 2024 21:05:45 +0000 (+0200) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=f08c6c01dcc03b727c69478c3a1de7ebf9facd95;p=culture.git Update. --- diff --git a/main.py b/main.py index 3ff64b7..5234d6f 100755 --- a/main.py +++ b/main.py @@ -219,6 +219,12 @@ default_task_args = { "nb_train_samples": 250000, "nb_test_samples": 10000, }, + "world": { + "model": "37M", + "batch_size": 25, + "nb_train_samples": 50000, + "nb_test_samples": 10000, + }, "byheart": { "model": "37M", "batch_size": 25, @@ -463,6 +469,16 @@ elif args.task == "byheart": ) args.max_percents_of_test_in_train = -1 +elif args.task == "world": + task = tasks.World( + nb_train_samples=args.nb_train_samples, + nb_test_samples=args.nb_test_samples, + batch_size=args.physical_batch_size, + logger=log_string, + device=device, + ) + args.max_percents_of_test_in_train = -1 + elif args.task == "learnop": task = tasks.SandBox( problem=problems.ProblemLearnOperator(), diff --git a/tasks.py b/tasks.py index 443419e..7894fcd 100755 --- a/tasks.py +++ b/tasks.py @@ -395,6 +395,145 @@ class SandBox(Task): # logger(f"wrote {filename}") +###################################################################### + +import world + + +class World(Task): + def __init__( + self, + nb_train_samples, + nb_test_samples, + batch_size, + logger=None, + device=torch.device("cpu"), + ): + super().__init__() + + self.batch_size = batch_size + self.device = device + self.height = 6 + self.width = 8 + + self.train_input = world.generate( + nb_train_samples, height=self.height, width=self.width + ) + self.train_ar_mask = ( + (torch.arange(self.train_input.size(1)) > self.train_input.size(1) // 2) + .long()[None, :] + .expand_as(self.train_input) + ) + + self.test_input = world.generate( + nb_test_samples, height=self.height, width=self.width + ) + self.test_ar_mask = ( + (torch.arange(self.test_input.size(1)) > self.test_input.size(1) // 2) + .long()[None, :] + .expand_as(self.test_input) + ) + + self.train_input, self.train_ar_mask = self.train_input.to( + device + ), self.train_ar_mask.to(device) + self.test_input, self.test_ar_mask = self.test_input.to( + device + ), self.test_ar_mask.to(device) + + self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1 + + def batches(self, split="train", nb_to_use=-1, desc=None): + assert split in {"train", "test"} + input = self.train_input if split == "train" else self.test_input + if nb_to_use > 0: + input = input[:nb_to_use] + if desc is None: + desc = f"epoch-{split}" + for batch in tqdm.tqdm( + input.split(self.batch_size), dynamic_ncols=True, desc=desc + ): + yield batch + + def vocabulary_size(self): + return self.nb_codes + + def produce_results( + self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000 + ): + def compute_accuracy(input, ar_mask, logger=None): + input, ar_mask = input[:nmax], ar_mask[:nmax] + result = input.clone() * (1 - ar_mask) + + masked_inplace_autoregression( + model, + self.batch_size, + result, + ar_mask, + deterministic_synthesis, + progress_bar_desc=None, + device=self.device, + ) + + nb_total, nb_correct = ( + input.size(0), + (input == result).long().min(dim=1).values.sum(), + ) + + return nb_total, nb_correct + + train_nb_total, train_nb_correct = compute_accuracy( + self.train_input, self.train_ar_mask + ) + + logger( + f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%" + ) + + test_nb_total, test_nb_correct = compute_accuracy( + self.test_input, self.test_ar_mask, logger + ) + + logger( + f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" + ) + + logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}") + + if save_attention_image is not None: + for k in range(10): + ns = torch.randint(self.test_input.size(0), (1,)).item() + input = self.test_input[ns : ns + 1].clone() + + with torch.autograd.no_grad(): + t = model.training + model.eval() + # model.record_attention(True) + model(BracketedSequence(input)) + model.train(t) + # ram = model.retrieve_attention() + # model.record_attention(False) + + # tokens_output = [c for c in self.problem.seq2str(input[0])] + # tokens_input = ["n/a"] + tokens_output[:-1] + # for n_head in range(ram[0].size(1)): + # filename = os.path.join( + # result_dir, f"sandbox_attention_{k}_h{n_head}.pdf" + # ) + # attention_matrices = [m[0, n_head] for m in ram] + # save_attention_image( + # filename, + # tokens_input, + # tokens_output, + # attention_matrices, + # k_top=10, + ##min_total_attention=0.9, + # token_gap=12, + # layer_gap=50, + # ) + # logger(f"wrote {filename}") + + ###################################################################### import picoclvr diff --git a/world.py b/world.py index d95bddb..0392940 100755 --- a/world.py +++ b/world.py @@ -11,475 +11,120 @@ import torch, torchvision from torch import nn from torch.nn import functional as F -import cairo ###################################################################### -class Box: - nb_rgb_levels = 10 - - def __init__(self, x, y, w, h, r, g, b): - self.x = x - self.y = y - self.w = w - self.h = h - self.r = r - self.g = g - self.b = b - - def collision(self, scene): - for c in scene: - if ( - self is not c - and max(self.x, c.x) <= min(self.x + self.w, c.x + c.w) - and max(self.y, c.y) <= min(self.y + self.h, c.y + c.h) - ): - return True - return False - - -###################################################################### - - -class Normalizer(nn.Module): - def __init__(self, mu, std): - super().__init__() - self.register_buffer("mu", mu) - self.register_buffer("log_var", 2 * torch.log(std)) - - def forward(self, x): - return (x - self.mu) / torch.exp(self.log_var / 2.0) - - -class SignSTE(nn.Module): - def __init__(self): - super().__init__() - - def forward(self, x): - # torch.sign() takes three values - s = (x >= 0).float() * 2 - 1 - - if self.training: - u = torch.tanh(x) - return s + u - u.detach() - else: - return s - - -class DiscreteSampler2d(nn.Module): - def __init__(self): - super().__init__() - - def forward(self, x): - s = (x >= x.max(-3, keepdim=True).values).float() - - if self.training: - u = x.softmax(dim=-3) - return s + u - u.detach() - else: - return s - - -def loss_H(binary_logits, h_threshold=1): - p = binary_logits.sigmoid().mean(0) - h = (-p.xlogy(p) - (1 - p).xlogy(1 - p)) / math.log(2) - h.clamp_(max=h_threshold) - return h_threshold - h.mean() - - -def train_encoder( - train_input, - test_input, - depth, - nb_bits_per_token, - dim_hidden=48, - lambda_entropy=0.0, - lr_start=1e-3, - lr_end=1e-4, - nb_epochs=10, - batch_size=25, - logger=None, - device=torch.device("cpu"), -): - mu, std = train_input.float().mean(), train_input.float().std() - - def encoder_core(depth, dim): - l = [ - [ - nn.Conv2d( - dim * 2**k, dim * 2**k, kernel_size=5, stride=1, padding=2 - ), - nn.ReLU(), - nn.Conv2d(dim * 2**k, dim * 2 ** (k + 1), kernel_size=2, stride=2), - nn.ReLU(), - ] - for k in range(depth) - ] - - return nn.Sequential(*[x for m in l for x in m]) - - def decoder_core(depth, dim): - l = [ - [ - nn.ConvTranspose2d( - dim * 2 ** (k + 1), dim * 2**k, kernel_size=2, stride=2 - ), - nn.ReLU(), - nn.ConvTranspose2d( - dim * 2**k, dim * 2**k, kernel_size=5, stride=1, padding=2 - ), - nn.ReLU(), - ] - for k in range(depth - 1, -1, -1) - ] - - return nn.Sequential(*[x for m in l for x in m]) - - encoder = nn.Sequential( - Normalizer(mu, std), - nn.Conv2d(3, dim_hidden, kernel_size=1, stride=1), - nn.ReLU(), - # 64x64 - encoder_core(depth=depth, dim=dim_hidden), - # 8x8 - nn.Conv2d(dim_hidden * 2**depth, nb_bits_per_token, kernel_size=1, stride=1), - ) - - quantizer = SignSTE() - - decoder = nn.Sequential( - nn.Conv2d(nb_bits_per_token, dim_hidden * 2**depth, kernel_size=1, stride=1), - # 8x8 - decoder_core(depth=depth, dim=dim_hidden), - # 64x64 - nn.ConvTranspose2d(dim_hidden, 3 * Box.nb_rgb_levels, kernel_size=1, stride=1), - ) - - model = nn.Sequential(encoder, decoder) - - nb_parameters = sum(p.numel() for p in model.parameters()) - - logger(f"vqae nb_parameters {nb_parameters}") - - model.to(device) - - for k in range(nb_epochs): - lr = math.exp( - math.log(lr_start) + math.log(lr_end / lr_start) / (nb_epochs - 1) * k - ) - optimizer = torch.optim.Adam(model.parameters(), lr=lr) - - acc_train_loss = 0.0 - - for input in tqdm.tqdm(train_input.split(batch_size), desc="vqae-train"): - input = input.to(device) - z = encoder(input) - zq = quantizer(z) - output = decoder(zq) - - output = output.reshape( - output.size(0), -1, 3, output.size(2), output.size(3) - ) - - train_loss = F.cross_entropy(output, input) - - if lambda_entropy > 0: - train_loss = train_loss + lambda_entropy * loss_H(z, h_threshold=0.5) - - acc_train_loss += train_loss.item() * input.size(0) - - optimizer.zero_grad() - train_loss.backward() - optimizer.step() - - acc_test_loss = 0.0 - - for input in tqdm.tqdm(test_input.split(batch_size), desc="vqae-test"): - input = input.to(device) - z = encoder(input) - zq = quantizer(z) - output = decoder(zq) - - output = output.reshape( - output.size(0), -1, 3, output.size(2), output.size(3) - ) - - test_loss = F.cross_entropy(output, input) - - acc_test_loss += test_loss.item() * input.size(0) - - train_loss = acc_train_loss / train_input.size(0) - test_loss = acc_test_loss / test_input.size(0) - - logger(f"vqae train {k} lr {lr} train_loss {train_loss} test_loss {test_loss}") - sys.stdout.flush() - - return encoder, quantizer, decoder - - -###################################################################### - - -def scene2tensor(xh, yh, scene, size): - width, height = size, size - pixel_map = torch.ByteTensor(width, height, 4).fill_(255) - data = pixel_map.numpy() - surface = cairo.ImageSurface.create_for_data( - data, cairo.FORMAT_ARGB32, width, height - ) - - ctx = cairo.Context(surface) - ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD) - - for b in scene: - ctx.move_to(b.x * size, b.y * size) - ctx.rel_line_to(b.w * size, 0) - ctx.rel_line_to(0, b.h * size) - ctx.rel_line_to(-b.w * size, 0) - ctx.close_path() - ctx.set_source_rgba( - b.r / (Box.nb_rgb_levels - 1), - b.g / (Box.nb_rgb_levels - 1), - b.b / (Box.nb_rgb_levels - 1), - 1.0, - ) - ctx.fill() - - hs = size * 0.1 - ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) - ctx.move_to(xh * size - hs / 2, yh * size - hs / 2) - ctx.rel_line_to(hs, 0) - ctx.rel_line_to(0, hs) - ctx.rel_line_to(-hs, 0) - ctx.close_path() - ctx.fill() - - return ( - pixel_map[None, :, :, :3] - .flip(-1) - .permute(0, 3, 1, 2) - .long() - .mul(Box.nb_rgb_levels) - .floor_divide(256) - ) - - -def random_scene(nb_insert_attempts=3): - scene = [] - colors = [ - ((Box.nb_rgb_levels - 1), 0, 0), - (0, (Box.nb_rgb_levels - 1), 0), - (0, 0, (Box.nb_rgb_levels - 1)), - ((Box.nb_rgb_levels - 1), (Box.nb_rgb_levels - 1), 0), - ( - (Box.nb_rgb_levels * 2) // 3, - (Box.nb_rgb_levels * 2) // 3, - (Box.nb_rgb_levels * 2) // 3, - ), - ] - - for k in range(nb_insert_attempts): - wh = torch.rand(2) * 0.2 + 0.2 - xy = torch.rand(2) * (1 - wh) - c = colors[torch.randint(len(colors), (1,))] - b = Box( - xy[0].item(), xy[1].item(), wh[0].item(), wh[1].item(), c[0], c[1], c[2] - ) - if not b.collision(scene): - scene.append(b) - - return scene - - -def generate_episode(steps, size=64): - delta = 0.1 - effects = [ - (False, 0, 0), - (False, delta, 0), - (False, 0, delta), - (False, -delta, 0), - (False, 0, -delta), - (True, delta, 0), - (True, 0, delta), - (True, -delta, 0), - (True, 0, -delta), +colors = torch.tensor( + [ + [255, 255, 255], + [0, 0, 0], + [255, 0, 0], + [0, 128, 0], + [0, 0, 255], + [255, 255, 0], + [192, 192, 192], ] +) - while True: - frames = [] - - scene = random_scene() - xh, yh = tuple(x.item() for x in torch.rand(2)) - - actions = torch.randint(len(effects), (len(steps),)) - nb_changes = 0 - - for s, a in zip(steps, actions): - if s: - frames.append(scene2tensor(xh, yh, scene, size=size)) +token2char = "_X01234>" - grasp, dx, dy = effects[a] - if grasp: - for b in scene: - if b.x <= xh and b.x + b.w >= xh and b.y <= yh and b.y + b.h >= yh: - x, y = b.x, b.y - b.x += dx - b.y += dy - if ( - b.x < 0 - or b.y < 0 - or b.x + b.w > 1 - or b.y + b.h > 1 - or b.collision(scene) - ): - b.x, b.y = x, y - else: - xh += dx - yh += dy - nb_changes += 1 - else: - x, y = xh, yh - xh += dx - yh += dy - if xh < 0 or xh > 1 or yh < 0 or yh > 1: - xh, yh = x, y - - if nb_changes > len(steps) // 3: - break - - return frames, actions - - -###################################################################### - - -def generate_episodes(nb, steps): - all_frames, all_actions = [], [] - for n in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world-data"): - frames, actions = generate_episode(steps) - all_frames += frames - all_actions += [actions[None, :]] - return torch.cat(all_frames, 0).contiguous(), torch.cat(all_actions, 0) - - -def create_data_and_processors( - nb_train_samples, - nb_test_samples, - mode, - nb_steps, - depth=3, - nb_bits_per_token=8, - nb_epochs=10, - device=torch.device("cpu"), - device_storage=torch.device("cpu"), - logger=None, +def generate( + nb, + height, + width, + obj_length=6, + mask_height=3, + mask_width=3, + nb_obj=3, ): - assert mode in ["first_last"] - - if mode == "first_last": - steps = [True] + [False] * (nb_steps + 1) + [True] - - if logger is None: - logger = lambda s: print(s) - - train_input, train_actions = generate_episodes(nb_train_samples, steps) - train_input, train_actions = train_input.to(device_storage), train_actions.to( - device_storage + intact = torch.zeros(nb, height, width, dtype=torch.int64) + n = torch.arange(intact.size(0)) + + for n in range(nb): + for c in torch.randperm(colors.size(0) - 2)[:nb_obj] + 2: + z = intact[n].flatten() + m = (torch.rand(z.size()) * (z == 0)).argmax(dim=0) + i, j = m // width, m % width + vm = torch.randint(4, (1,))[0] + vi, vj = (vm // 2) * (2 * (vm % 2) - 1), (1 - vm // 2) * (2 * (vm % 2) - 1) + for l in range(obj_length): + intact[n, i, j] = c + i += vi + j += vj + if i < 0 or i >= height or j < 0 or j >= width or intact[n, i, j] != 0: + i -= vi + j -= vj + vi, vj = -vj, vi + i += vi + j += vj + if ( + i < 0 + or i >= height + or j < 0 + or j >= width + or intact[n, i, j] != 0 + ): + break + + masked = intact.clone() + + for n in range(nb): + i = torch.randint(height - mask_height + 1, (1,))[0] + j = torch.randint(width - mask_width + 1, (1,))[0] + masked[n, i : i + mask_height, j : j + mask_width] = 1 + + return torch.cat( + [ + masked.flatten(1), + torch.full((masked.size(0), 1), len(colors)), + intact.flatten(1), + ], + dim=1, ) - test_input, test_actions = generate_episodes(nb_test_samples, steps) - test_input, test_actions = test_input.to(device_storage), test_actions.to( - device_storage - ) - - encoder, quantizer, decoder = train_encoder( - train_input, - test_input, - depth=depth, - nb_bits_per_token=nb_bits_per_token, - lambda_entropy=1.0, - nb_epochs=nb_epochs, - logger=logger, - device=device, - ) - encoder.train(False) - quantizer.train(False) - decoder.train(False) - - z = encoder(train_input[:1].to(device)) - pow2 = (2 ** torch.arange(z.size(1), device=device))[None, None, :] - z_h, z_w = z.size(2), z.size(3) - - logger(f"vqae input {train_input[0].size()} output {z[0].size()}") - - def frame2seq(input, batch_size=25): - seq = [] - p = pow2.to(device) - for x in input.split(batch_size): - x = x.to(device) - z = encoder(x) - ze_bool = (quantizer(z) >= 0).long() - output = ( - ze_bool.permute(0, 2, 3, 1).reshape( - ze_bool.size(0), -1, ze_bool.size(1) - ) - * p - ).sum(-1) - seq.append(output) - return torch.cat(seq, dim=0) - - def seq2frame(input, batch_size=25, T=1e-2): - frames = [] - p = pow2.to(device) - for seq in input.split(batch_size): - seq = seq.to(device) - zd_bool = (seq[:, :, None] // p) % 2 - zd_bool = zd_bool.reshape(zd_bool.size(0), z_h, z_w, -1).permute(0, 3, 1, 2) - logits = decoder(zd_bool * 2.0 - 1.0) - logits = logits.reshape( - logits.size(0), -1, 3, logits.size(2), logits.size(3) - ).permute(0, 2, 3, 4, 1) - output = torch.distributions.categorical.Categorical( - logits=logits / T - ).sample() +def sample2img(seq, height, width): + intact = seq[:, : height * width].reshape(-1, height, width) + masked = seq[:, height * width + 1 :].reshape(-1, height, width) + img_intact, img_masked = colors[intact], colors[masked] + + img = torch.cat( + [ + img_intact, + torch.full( + (img_intact.size(0), img_intact.size(1), 1, img_intact.size(3)), 1 + ), + img_masked, + ], + dim=2, + ) - frames.append(output) + return img.permute(0, 3, 1, 2) - return torch.cat(frames, dim=0) - return train_input, train_actions, test_input, test_actions, frame2seq, seq2frame +def seq2str(seq): + result = [] + for s in seq: + result.append("".join([token2char[v] for v in s])) + return result ###################################################################### if __name__ == "__main__": - ( - train_input, - train_actions, - test_input, - test_actions, - frame2seq, - seq2frame, - ) = create_data_and_processors( - 250, - 1000, - nb_epochs=5, - mode="first_last", - nb_steps=20, - ) + import time - input = test_input[:256] + height, width = 6, 8 + start_time = time.perf_counter() + seq = generate(nb=64, height=height, width=width) + delay = time.perf_counter() - start_time + print(f"{seq.size(0)/delay:02f} samples/s") - seq = frame2seq(input) - output = seq2frame(seq) + print(seq2str(seq[:4])) - torchvision.utils.save_image( - input.float() / (Box.nb_rgb_levels - 1), "orig.png", nrow=16 - ) + img = sample2img(seq, height, width) + print(img.size()) - torchvision.utils.save_image( - output.float() / (Box.nb_rgb_levels - 1), "qtiz.png", nrow=16 - ) + torchvision.utils.save_image(img.float() / 255.0, "world.png", nrow=8, padding=2)