From: François Fleuret Date: Mon, 29 Jul 2024 10:38:48 +0000 (+0200) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=eb1399cc7de466cf1b62bd24c067f661c0127047;p=culture.git Update. --- diff --git a/main.py b/main.py index 0d4cd10..fc703f7 100755 --- a/main.py +++ b/main.py @@ -87,11 +87,11 @@ parser.add_argument("--gpus", type=str, default="all") parser.add_argument("--nb_gpts", type=int, default=5) -parser.add_argument("--max_fail_to_validate", type=int, default=1) +parser.add_argument("--max_fail_to_validate", type=int, default=2) parser.add_argument("--accuracy_to_make_c_quizzes", type=float, default=0.98) -parser.add_argument("--proba_understands", type=float, default=0.99) +parser.add_argument("--proba_understands", type=float, default=0.9) parser.add_argument("--proba_not_understands", type=float, default=0.5) @@ -454,7 +454,7 @@ def one_epoch(model, quiz_machine, local_device=main_device): def model_transformer_hot(model): # model.temperature = args.temperature_hot - model.set_noise_injection(1.0, ("ffw", 2)) + model.set_noise_injection(0.5, ("ffw", args.nb_blocks // 2)) def model_transformer_cold(model): @@ -549,9 +549,11 @@ def record_new_c_quizzes(models, quiz_machine, nb_for_train=1000, nb_for_test=10 # We use the model that has generated the fewest quizzes to # balance the number of quizzes per model overall - model_for_generation = sorted( - models, key=lambda m: nb_validated_per_model[m.id] - )[0] + # model_for_generation = sorted( + # models, key=lambda m: nb_validated_per_model[m.id] + # )[0] + + model_for_generation = models[torch.randint(len(models), (1,)).item()] # We generate quizzes with a procedure that injects some # structured noise @@ -860,6 +862,44 @@ log_string( ###################################################################### +#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! +if False: + for model in models: + for b in range(args.nb_blocks): + for o in [0.5, 1.0, 2.0]: + + def model_transformer_hot(model): + # model.temperature = args.temperature_hot + model.set_noise_injection(o, ("ffw", b)) + + def model_transformer_cold(model): + pass + + # model.temperature = args.temperature_cold + + c_quizzes_procedure = [ + # (("f_B", "f_A", "A", "B"), (1, 0, 0, 0), model_transformer_hot), + # (("f_B", "f_A", "A", "B"), (0, 1, 1, 1), model_transformer_cold), + # (("A", "f_A", "B", "f_B"), (0, 0, 0, 1), model_transformer_cold), + (("A", "f_A", "B", "f_B"), (1, 1, 1, 1), model_transformer_hot), + ] + + c_quizzes = quiz_machine.generate_c_quizzes( + 128, model_for_generation=model, procedure=c_quizzes_procedure + ) + + filename = f"generated_{b:02d}_{o:.02f}_{model.id:02d}.png" + print(filename) + + quiz_machine.problem.save_quizzes_as_image( + args.result_dir, + filename, + c_quizzes, + ) + exit(0) + +#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + if args.dirty_debug: args.accuracy_to_make_c_quizzes = 0.0 args.nb_gpts = 2