From: François Fleuret Date: Thu, 12 Oct 2023 20:31:19 +0000 (+0200) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=cb52b31a10ccf9b8df95114efb6a8039c1e006b6;p=picoclvr.git Update. --- diff --git a/qmlp.y b/qmlp.y new file mode 100755 index 0000000..7b97edb --- /dev/null +++ b/qmlp.y @@ -0,0 +1,303 @@ +#!/usr/bin/env python + +# @XREMOTE_HOST: elk.fleuret.org +# @XREMOTE_EXEC: python +# @XREMOTE_PRE: source ${HOME}/misc/venv/pytorch/bin/activate +# @XREMOTE_PRE: killall -u ${USER} -q -9 python || true +# @XREMOTE_PRE: ln -sf ${HOME}/data/pytorch ./data +# @XREMOTE_SEND: *.py *.sh + +# Any copyright is dedicated to the Public Domain. +# https://creativecommons.org/publicdomain/zero/1.0/ + +# Written by Francois Fleuret + +import math, sys + +import torch, torchvision + +from torch import nn +from torch.nn import functional as F + +###################################################################### + +nb_quantization_levels = 101 + + +def quantize(x, xmin, xmax): + return ( + ((x - xmin) / (xmax - xmin) * nb_quantization_levels) + .long() + .clamp(min=0, max=nb_quantization_levels - 1) + ) + + +def dequantize(q, xmin, xmax): + return q / nb_quantization_levels * (xmax - xmin) + xmin + + +###################################################################### + + +def create_model(): + hidden_dim = 32 + + model = nn.Sequential( + nn.Linear(2, hidden_dim), + nn.ReLU(), + nn.Linear(hidden_dim, hidden_dim), + nn.ReLU(), + nn.Linear(hidden_dim, 2), + ) + + return model + + +###################################################################### + + +def generate_sets_and_params( + nb_mlps, + nb_samples, + batch_size, + nb_epochs, + device=torch.device("cpu"), + print_log=False, +): + data_input = torch.zeros(nb_mlps, 2 * nb_samples, 2, device=device) + data_targets = torch.zeros( + nb_mlps, 2 * nb_samples, dtype=torch.int64, device=device + ) + + while (data_targets.float().mean(-1) - 0.5).abs().max() > 0.1: + i = (data_targets.float().mean(-1) - 0.5).abs() > 0.1 + nb = i.sum() + print(f"{nb=}") + + nb_rec = 2 + support = torch.rand(nb, nb_rec, 2, 3, device=device) * 2 - 1 + support = support.sort(-1).values + support = support[:, :, :, torch.tensor([0, 2])].view(nb, nb_rec, 4) + + x = torch.rand(nb, 2 * nb_samples, 2, device=device) * 2 - 1 + y = ( + ( + (x[:, None, :, 0] >= support[:, :, None, 0]).long() + * (x[:, None, :, 0] <= support[:, :, None, 1]).long() + * (x[:, None, :, 1] >= support[:, :, None, 2]).long() + * (x[:, None, :, 1] <= support[:, :, None, 3]).long() + ) + .max(dim=1) + .values + ) + + data_input[i], data_targets[i] = x, y + + train_input, train_targets = ( + data_input[:, :nb_samples], + data_targets[:, :nb_samples], + ) + test_input, test_targets = data_input[:, nb_samples:], data_targets[:, nb_samples:] + + q_train_input = quantize(train_input, -1, 1) + train_input = dequantize(q_train_input, -1, 1) + train_targets = train_targets + + q_test_input = quantize(test_input, -1, 1) + test_input = dequantize(q_test_input, -1, 1) + test_targets = test_targets + + hidden_dim = 32 + w1 = torch.randn(nb_mlps, hidden_dim, 2, device=device) / math.sqrt(2) + b1 = torch.zeros(nb_mlps, hidden_dim, device=device) + w2 = torch.randn(nb_mlps, 2, hidden_dim, device=device) / math.sqrt(hidden_dim) + b2 = torch.zeros(nb_mlps, 2, device=device) + + w1.requires_grad_() + b1.requires_grad_() + w2.requires_grad_() + b2.requires_grad_() + optimizer = torch.optim.Adam([w1, b1, w2, b2], lr=1e-2) + + criterion = nn.CrossEntropyLoss() + criterion.to(device) + + for k in range(nb_epochs): + acc_train_loss = 0.0 + nb_train_errors = 0 + + for input, targets in zip( + train_input.split(batch_size, dim=1), train_targets.split(batch_size, dim=1) + ): + h = torch.einsum("mij,mnj->mni", w1, input) + b1[:, None, :] + h = F.relu(h) + output = torch.einsum("mij,mnj->mni", w2, h) + b2[:, None, :] + loss = F.cross_entropy( + output.reshape(-1, output.size(-1)), targets.reshape(-1) + ) + acc_train_loss += loss.item() * input.size(0) + + wta = output.argmax(-1) + nb_train_errors += (wta != targets).long().sum(-1) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + with torch.no_grad(): + for p in [w1, b1, w2, b2]: + m = ( + torch.rand(p.size(), device=p.device) <= k / (nb_epochs - 1) + ).long() + pq = quantize(p, -2, 2) + p[...] = (1 - m) * p + m * dequantize(pq, -2, 2) + + train_error = nb_train_errors / train_input.size(1) + acc_train_loss = acc_train_loss / train_input.size(1) + + # print(f"{k=} {acc_train_loss=} {train_error=}") + + q_params = torch.cat( + [quantize(p.view(nb_mlps, -1), -2, 2) for p in [w1, b1, w2, b2]], dim=1 + ) + q_train_set = torch.cat([q_train_input, train_targets[:, :, None]], -1).reshape( + nb_mlps, -1 + ) + q_test_set = torch.cat([q_test_input, test_targets[:, :, None]], -1).reshape( + nb_mlps, -1 + ) + + return q_train_set, q_test_set, q_params + + +###################################################################### + + +def evaluate_q_params(q_params, q_set, batch_size=25, device=torch.device("cpu")): + nb_mlps = q_params.size(0) + hidden_dim = 32 + w1 = torch.empty(nb_mlps, hidden_dim, 2, device=device) + b1 = torch.empty(nb_mlps, hidden_dim, device=device) + w2 = torch.empty(nb_mlps, 2, hidden_dim, device=device) + b2 = torch.empty(nb_mlps, 2, device=device) + + with torch.no_grad(): + k = 0 + for p in [w1, b1, w2, b2]: + print(f"{p.size()=}") + x = dequantize(q_params[:, k : k + p.numel() // nb_mlps], -2, 2).view( + p.size() + ) + p.copy_(x) + k += p.numel() // nb_mlps + + q_set = q_set.view(nb_mlps, -1, 3) + data_input = dequantize(q_set[:, :, :2], -1, 1).to(device) + data_targets = q_set[:, :, 2].to(device) + + print(f"{data_input.size()=} {data_targets.size()=}") + + criterion = nn.CrossEntropyLoss() + criterion.to(device) + + acc_loss = 0.0 + nb_errors = 0 + + for input, targets in zip( + data_input.split(batch_size, dim=1), data_targets.split(batch_size, dim=1) + ): + h = torch.einsum("mij,mnj->mni", w1, input) + b1[:, None, :] + h = F.relu(h) + output = torch.einsum("mij,mnj->mni", w2, h) + b2[:, None, :] + loss = F.cross_entropy(output.reshape(-1, output.size(-1)), targets.reshape(-1)) + acc_loss += loss.item() * input.size(0) + wta = output.argmax(-1) + nb_errors += (wta != targets).long().sum(-1) + + error = nb_errors / data_input.size(1) + acc_loss = acc_loss / data_input.size(1) + + return error + + +###################################################################### + + +def generate_sequence_and_test_set( + nb_mlps, + nb_samples, + batch_size, + nb_epochs, + device, +): + q_train_set, q_test_set, q_params = generate_sets_and_params( + nb_mlps, + nb_samples, + batch_size, + nb_epochs, + device=device, + ) + + input = torch.cat( + [ + q_train_set, + q_train_set.new_full( + ( + q_train_set.size(0), + 1, + ), + nb_quantization_levels, + ), + q_params, + ], + dim=-1, + ) + + print(f"SANITY #1 {q_train_set.size()=} {q_params.size()=} {input.size()=}") + + ar_mask = ( + (torch.arange(input.size(0), device=input.device) > q_train_set.size(0) + 1) + .long() + .view(1, -1) + .reshape(nb_mlps, -1) + ) + + return input, ar_mask, q_test_set + + +###################################################################### + +if __name__ == "__main__": + import time + + nb_mlps, nb_samples = 128, 200 + + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + + start_time = time.perf_counter() + + data = [] + + for n in range(2): + data.append( + generate_sequence_and_test_set( + nb_mlps=nb_mlps, + nb_samples=nb_samples, + device=device, + batch_size=25, + nb_epochs=250, + ) + ) + + end_time = time.perf_counter() + nb = sum([i.size(0) for i, _, _ in data]) + print(f"{nb / (end_time - start_time):.02f} samples per second") + + for input, ar_mask, q_test_set in data: + q_train_set = input[:, : nb_samples * 3] + q_params = input[:, nb_samples * 3 + 1 :] + print(f"SANITY #2 {q_train_set.size()=} {q_params.size()=} {input.size()=}") + error_train = evaluate_q_params(q_params, q_train_set) + print(f"train {error_train*100}%") + error_test = evaluate_q_params(q_params, q_test_set) + print(f"test {error_test*100}%")