From: François Fleuret Date: Sat, 6 Jan 2024 11:32:45 +0000 (+0100) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=ca56d3dfa53f3486da1d651f31f1e34ea0dc4652;p=mygptrnn.git Update. --- diff --git a/mygpt.py b/mygpt.py index 7cecc22..d1acf22 100755 --- a/mygpt.py +++ b/mygpt.py @@ -181,7 +181,7 @@ def nsum_shape(X, Y_init): class DumbRec(nn.Module): def __init__( self, - dim_in, + dim_model, dim_qk, dim_v, nb_heads, @@ -199,11 +199,11 @@ class DumbRec(nn.Module): self.k_star = randw(nb_lines, dim_qk) - self.w_qw = randw(nb_heads, dim_qk, dim_in) - self.w_qr = randw(nb_heads, dim_qk, dim_in) - # self.w_k = randw(nb_heads, dim_qk, dim_in) - self.w_v = randw(nb_heads, dim_v, dim_in) - self.w_o = randw(dim_v * nb_heads, dim_in) + self.w_qw = randw(nb_heads, dim_qk, dim_model) + self.w_qr = randw(nb_heads, dim_qk, dim_model) + # self.w_k = randw(nb_heads, dim_qk, dim_model) + self.w_v = randw(nb_heads, dim_v, dim_model) + self.w_o = randw(dim_v * nb_heads, dim_model) def reset_inner_loss(self): self.acc_attention = 0 @@ -310,7 +310,7 @@ class DumbRec(nn.Module): class KVRec(nn.Module): def __init__( self, - dim_in, + dim_model, dim_qk, dim_v, nb_heads, @@ -328,11 +328,11 @@ class KVRec(nn.Module): self.k_star = randw(nb_lines, dim_qk) - self.w_qw = randw(nb_heads, dim_qk, dim_in) - self.w_qr = randw(nb_heads, dim_qk, dim_in) - self.w_k = randw(nb_heads, dim_qk, dim_in) - self.w_v = randw(nb_heads, dim_v, dim_in) - self.w_o = randw(dim_v * nb_heads, dim_in) + self.w_qw = randw(nb_heads, dim_qk, dim_model) + self.w_qr = randw(nb_heads, dim_qk, dim_model) + self.w_k = randw(nb_heads, dim_qk, dim_model) + self.w_v = randw(nb_heads, dim_v, dim_model) + self.w_o = randw(dim_v * nb_heads, dim_model) def reset_inner_loss(self): self.acc_attention = 0 @@ -456,7 +456,7 @@ def moving_window(x, dim, win_dim, win_size): class Caterpillar(nn.Module): def __init__( self, - dim_in, + dim_model, dim_qk, dim_v, nb_heads, @@ -476,17 +476,17 @@ class Caterpillar(nn.Module): self.caterpillar_height = caterpillar_height self.attention_dropout = attention_dropout - self.w_G = randw(nb_heads, caterpillar_height, dim_in) + self.w_G = randw(nb_heads, caterpillar_height, dim_model) self.b_G = nn.Parameter( torch.full( (nb_heads, caterpillar_height), -math.log(caterpillar_height - 1) ) ) - self.w_K = randw(nb_heads, dim_qk, dim_in) - self.w_V = randw(nb_heads, dim_v, dim_in) - self.w_Q = randw(nb_heads, dim_qk, dim_in) - self.w_O = randw(dim_v * nb_heads, dim_in) + self.w_K = randw(nb_heads, dim_qk, dim_model) + self.w_V = randw(nb_heads, dim_v, dim_model) + self.w_Q = randw(nb_heads, dim_qk, dim_model) + self.w_O = randw(dim_v * nb_heads, dim_model) self.init_K_rec = randw(caterpillar_height, caterpillar_length, dim_qk) self.init_V_rec = randw(caterpillar_height, caterpillar_length, dim_v) @@ -622,7 +622,7 @@ class Caterpillar(nn.Module): class QKVAttention(nn.Module): def __init__( self, - dim_in, + dim_model, dim_qk, dim_v, nb_heads=1, @@ -638,10 +638,10 @@ class QKVAttention(nn.Module): self.attention_dropout = attention_dropout self.record_attention = False - self.w_q = randw(nb_heads, dim_qk, dim_in) - self.w_k = randw(nb_heads, dim_qk, dim_in) - self.w_v = randw(nb_heads, dim_v, dim_in) - self.w_o = randw(dim_v * nb_heads, dim_in) + self.w_q = randw(nb_heads, dim_qk, dim_model) + self.w_k = randw(nb_heads, dim_qk, dim_model) + self.w_v = randw(nb_heads, dim_v, dim_model) + self.w_o = randw(dim_v * nb_heads, dim_model) def forward(self, bs): x_q = bs.x @@ -745,7 +745,7 @@ class MyGPT(nn.Module): def attlayer(): if attention_layer == "mha": return QKVAttention( - dim_in=dim_model, + dim_model=dim_model, dim_qk=dim_keys, dim_v=dim_model // nb_heads, nb_heads=nb_heads, @@ -754,7 +754,7 @@ class MyGPT(nn.Module): ) elif attention_layer == "dumbrec": return DumbRec( - dim_in=dim_model, + dim_model=dim_model, dim_qk=dim_keys, dim_v=dim_rec_v, nb_heads=nb_heads, @@ -763,7 +763,7 @@ class MyGPT(nn.Module): ) elif attention_layer == "kvrec": return KVRec( - dim_in=dim_model, + dim_model=dim_model, dim_qk=dim_keys, dim_v=dim_rec_v, nb_heads=nb_heads, @@ -772,7 +772,7 @@ class MyGPT(nn.Module): ) elif attention_layer == "caterpillar": return Caterpillar( - dim_in=dim_model, + dim_model=dim_model, dim_qk=dim_keys, dim_v=dim_rec_v, nb_heads=nb_heads, @@ -912,7 +912,7 @@ if __name__ == "__main__": print("Basic check.") m = Caterpillar( - dim_in=4, + dim_model=4, dim_qk=3, dim_v=7, nb_heads=1,