From: Francois Fleuret Date: Tue, 19 May 2020 08:06:56 +0000 (+0200) Subject: Initial commit. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=c8ca3a8eb2917f92db6e6f8ed7cb00595af02e52;p=pytorch.git Initial commit. --- diff --git a/attentiontoy1d.py b/attentiontoy1d.py new file mode 100755 index 0000000..cff8350 --- /dev/null +++ b/attentiontoy1d.py @@ -0,0 +1,357 @@ +#!/usr/bin/env python + +# @XREMOTE_HOST: elk.fleuret.org +# @XREMOTE_EXEC: /home/fleuret/conda/bin/python +# @XREMOTE_PRE: killall -q -9 python || echo "Nothing killed" +# @XREMOTE_GET: *.pdf *.log + +import torch, math, sys, argparse + +from torch import nn +from torch.nn import functional as F + +###################################################################### + +parser = argparse.ArgumentParser(description='Toy RNN.') + +parser.add_argument('--nb_epochs', + type = int, default = 250) + +parser.add_argument('--with_attention', + help = 'Use the model with an attention layer', + action='store_true', default=False) + +parser.add_argument('--group_by_locations', + help = 'Use the task where the grouping is location-based', + action='store_true', default=False) + +parser.add_argument('--positional_encoding', + help = 'Provide a positional encoding', + action='store_true', default=False) + +args = parser.parse_args() + +###################################################################### + +label='' + +if args.with_attention: label = 'wa_' + +if args.group_by_locations: label += 'lg_' + +if args.positional_encoding: label += 'pe_' + +log_file = open(f'att1d_{label}train.log', 'w') + +###################################################################### + +def log_string(s): + if log_file is not None: + log_file.write(s + '\n') + log_file.flush() + print(s) + sys.stdout.flush() + +###################################################################### + +if torch.cuda.is_available(): + device = torch.device('cuda') + torch.backends.cudnn.benchmark = True +else: + device = torch.device('cpu') + +torch.manual_seed(1) + +###################################################################### + +seq_height_min, seq_height_max = 1.0, 25.0 +seq_width_min, seq_width_max = 5.0, 11.0 +seq_length = 100 + +def positions_to_sequences(tr = None, bx = None, noise_level = 0.3): + st = torch.arange(seq_length).float() + st = st[None, :, None] + tr = tr[:, None, :, :] + bx = bx[:, None, :, :] + + xtr = torch.relu(tr[..., 1] - torch.relu(torch.abs(st - tr[..., 0]) - 0.5) * 2 * tr[..., 1] / tr[..., 2]) + xbx = torch.sign(torch.relu(bx[..., 1] - torch.abs((st - bx[..., 0]) * 2 * bx[..., 1] / bx[..., 2]))) * bx[..., 1] + + x = torch.cat((xtr, xbx), 2) + + # u = x.sign() + u = F.max_pool1d(x.sign().permute(0, 2, 1), kernel_size = 2, stride = 1).permute(0, 2, 1) + + collisions = (u.sum(2) > 1).max(1).values + y = x.max(2).values + + return y + torch.rand_like(y) * noise_level - noise_level / 2, collisions + +###################################################################### + +def generate_sequences(nb): + + # Position / height / width + + tr = torch.empty(nb, 2, 3) + tr[:, :, 0].uniform_(seq_width_max/2, seq_length - seq_width_max/2) + tr[:, :, 1].uniform_(seq_height_min, seq_height_max) + tr[:, :, 2].uniform_(seq_width_min, seq_width_max) + + bx = torch.empty(nb, 2, 3) + bx[:, :, 0].uniform_(seq_width_max/2, seq_length - seq_width_max/2) + bx[:, :, 1].uniform_(seq_height_min, seq_height_max) + bx[:, :, 2].uniform_(seq_width_min, seq_width_max) + + if args.group_by_locations: + a = torch.cat((tr, bx), 1) + v = a[:, :, 0].sort(1).values[:, 2:3] + mask_left = (a[:, :, 0] < v).float() + h_left = (a[:, :, 1] * mask_left).sum(1) / 2 + h_right = (a[:, :, 1] * (1 - mask_left)).sum(1) / 2 + valid = (h_left - h_right).abs() > 4 + else: + valid = (torch.abs(tr[:, 0, 1] - tr[:, 1, 1]) > 4) & (torch.abs(tr[:, 0, 1] - tr[:, 1, 1]) > 4) + + input, collisions = positions_to_sequences(tr, bx) + + if args.group_by_locations: + a = torch.cat((tr, bx), 1) + v = a[:, :, 0].sort(1).values[:, 2:3] + mask_left = (a[:, :, 0] < v).float() + h_left = (a[:, :, 1] * mask_left).sum(1, keepdim = True) / 2 + h_right = (a[:, :, 1] * (1 - mask_left)).sum(1, keepdim = True) / 2 + a[:, :, 1] = mask_left * h_left + (1 - mask_left) * h_right + tr, bx = a.split(2, 1) + else: + tr[:, :, 1:2] = tr[:, :, 1:2].mean(1, keepdim = True) + bx[:, :, 1:2] = bx[:, :, 1:2].mean(1, keepdim = True) + + targets, _ = positions_to_sequences(tr, bx) + + valid = valid & ~collisions + tr = tr[valid] + bx = bx[valid] + input = input[valid][:, None, :] + targets = targets[valid][:, None, :] + + if input.size(0) < nb: + input2, targets2, tr2, bx2 = generate_sequences(nb - input.size(0)) + input = torch.cat((input, input2), 0) + targets = torch.cat((targets, targets2), 0) + tr = torch.cat((tr, tr2), 0) + bx = torch.cat((bx, bx2), 0) + + return input, targets, tr, bx + +###################################################################### + +import matplotlib.pyplot as plt +import matplotlib.collections as mc + +def save_sequence_images(filename, sequences, tr = None, bx = None): + fig = plt.figure() + ax = fig.add_subplot(1, 1, 1) + + ax.set_xlim(0, seq_length) + ax.set_ylim(-1, seq_height_max + 4) + + for u in sequences: + ax.plot( + torch.arange(u[0].size(0)) + 0.5, u[0], color = u[1], label = u[2] + ) + + ax.legend(frameon = False, loc = 'upper left') + + delta = -1. + if tr is not None: + ax.scatter(test_tr[k, :, 0], torch.full((test_tr.size(1),), delta), color = 'black', marker = '^', clip_on=False) + + if bx is not None: + ax.scatter(test_bx[k, :, 0], torch.full((test_bx.size(1),), delta), color = 'black', marker = 's', clip_on=False) + + fig.savefig(filename, bbox_inches='tight') + + plt.close('all') + +###################################################################### + +class AttentionLayer(nn.Module): + def __init__(self, in_channels, out_channels, key_channels): + super(AttentionLayer, self).__init__() + self.conv_Q = nn.Conv1d(in_channels, key_channels, kernel_size = 1, bias = False) + self.conv_K = nn.Conv1d(in_channels, key_channels, kernel_size = 1, bias = False) + self.conv_V = nn.Conv1d(in_channels, out_channels, kernel_size = 1, bias = False) + + def forward(self, x): + Q = self.conv_Q(x) + K = self.conv_K(x) + V = self.conv_V(x) + A = Q.permute(0, 2, 1).matmul(K).softmax(2) + x = A.matmul(V.permute(0, 2, 1)).permute(0, 2, 1) + return x + + def __repr__(self): + return self._get_name() + \ + '(in_channels={}, out_channels={}, key_channels={})'.format( + self.conv_Q.in_channels, + self.conv_V.out_channels, + self.conv_K.out_channels + ) + + def attention(self, x): + Q = self.conv_Q(x) + K = self.conv_K(x) + return Q.permute(0, 2, 1).matmul(K).softmax(2) + +###################################################################### + +train_input, train_targets, train_tr, train_bx = generate_sequences(25000) +test_input, test_targets, test_tr, test_bx = generate_sequences(1000) + +###################################################################### + +ks = 5 +nc = 64 + +if args.positional_encoding: + c = math.ceil(math.log(seq_length) / math.log(2.0)) + positional_input = (torch.arange(seq_length).unsqueeze(0) // 2**torch.arange(c).unsqueeze(1))%2 + positional_input = positional_input.unsqueeze(0).float() +else: + positional_input = torch.zeros(1, 0, seq_length) + +in_channels = 1 + positional_input.size(1) + +if args.with_attention: + + model = nn.Sequential( + nn.Conv1d(in_channels, nc, kernel_size = ks, padding = ks//2), + nn.ReLU(), + nn.Conv1d(nc, nc, kernel_size = ks, padding = ks//2), + nn.ReLU(), + AttentionLayer(nc, nc, nc), + nn.Conv1d(nc, nc, kernel_size = ks, padding = ks//2), + nn.ReLU(), + nn.Conv1d(nc, 1, kernel_size = ks, padding = ks//2) + ) + +else: + + model = nn.Sequential( + nn.Conv1d(in_channels, nc, kernel_size = ks, padding = ks//2), + nn.ReLU(), + nn.Conv1d(nc, nc, kernel_size = ks, padding = ks//2), + nn.ReLU(), + nn.Conv1d(nc, nc, kernel_size = ks, padding = ks//2), + nn.ReLU(), + nn.Conv1d(nc, nc, kernel_size = ks, padding = ks//2), + nn.ReLU(), + nn.Conv1d(nc, 1, kernel_size = ks, padding = ks//2) + ) + +nb_parameters = sum(p.numel() for p in model.parameters()) + +with open(f'att1d_{label}model.log', 'w') as f: + f.write(str(model) + '\n\n') + f.write(f'nb_parameters {nb_parameters}\n') + +###################################################################### + +batch_size = 100 + +optimizer = torch.optim.Adam(model.parameters(), lr = 1e-3) +mse_loss = nn.MSELoss() + +model.to(device) +mse_loss.to(device) +train_input, train_targets = train_input.to(device), train_targets.to(device) +test_input, test_targets = test_input.to(device), test_targets.to(device) +positional_input = positional_input.to(device) + +mu, std = train_input.mean(), train_input.std() + +for e in range(args.nb_epochs): + acc_loss = 0.0 + + for input, targets in zip(train_input.split(batch_size), + train_targets.split(batch_size)): + + input = torch.cat((input, positional_input.expand(input.size(0), -1, -1)), 1) + + output = model((input - mu) / std) + loss = mse_loss(output, targets) + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + acc_loss += loss.item() + + log_string(f'{e+1} {acc_loss}') + +###################################################################### + +train_input = train_input.detach().to('cpu') +train_targets = train_targets.detach().to('cpu') + +for k in range(15): + save_sequence_images( + f'att1d_{label}train_{k:03d}.pdf', + [ + ( train_input[k, 0], 'blue', 'Input' ), + ( train_targets[k, 0], 'red', 'Target' ), + ], + ) + +#################### + +test_input = torch.cat((test_input, positional_input.expand(test_input.size(0), -1, -1)), 1) +test_outputs = model((test_input - mu) / std).detach() + +if args.with_attention: + x = model[0:4]((test_input - mu) / std) + test_A = model[4].attention(x) + test_A = test_A.detach().to('cpu') + +test_input = test_input.detach().to('cpu') +test_outputs = test_outputs.detach().to('cpu') +test_targets = test_targets.detach().to('cpu') + +for k in range(15): + save_sequence_images( + f'att1d_{label}test_Y_{k:03d}.pdf', + [ + ( test_input[k, 0], 'blue', 'Input' ), + ( test_outputs[k, 0], 'orange', 'Output' ), + ] + ) + + save_sequence_images( + f'att1d_{label}test_Yp_{k:03d}.pdf', + [ + ( test_input[k, 0], 'blue', 'Input' ), + ( test_outputs[k, 0], 'orange', 'Output' ), + ], + test_tr[k], + test_bx[k] + ) + + if args.with_attention: + fig = plt.figure() + ax = fig.add_subplot(1, 1, 1) + ax.set_xlim(0, seq_length) + ax.set_ylim(0, seq_length) + + ax.imshow(test_A[k], cmap = 'binary', interpolation='nearest') + delta = 0. + ax.scatter(test_bx[k, :, 0], torch.full((test_bx.size(1),), delta), color = 'black', marker = 's', clip_on=False) + ax.scatter(torch.full((test_bx.size(1),), delta), test_bx[k, :, 0], color = 'black', marker = 's', clip_on=False) + ax.scatter(test_tr[k, :, 0], torch.full((test_tr.size(1),), delta), color = 'black', marker = '^', clip_on=False) + ax.scatter(torch.full((test_tr.size(1),), delta), test_tr[k, :, 0], color = 'black', marker = '^', clip_on=False) + + fig.savefig(f'att1d_{label}test_A_{k:03d}.pdf', bbox_inches='tight') + + plt.close('all') + +######################################################################