From: François Fleuret Date: Fri, 19 Jan 2024 13:02:37 +0000 (+0100) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=c45d89eb5383eedf60466678eae623582bd5781c;p=mygptrnn.git Update. --- diff --git a/main.py b/main.py index 79841f3..3aa696b 100755 --- a/main.py +++ b/main.py @@ -99,7 +99,11 @@ parser.add_argument("--nb_lines", type=int, default=None) parser.add_argument("--caterpillar_height", type=int, default=None) -parser.add_argument("--rho", type=float, default=0.0) +parser.add_argument("--gate_dropout_proba", type=float, default=0.0) + +parser.add_argument("--gate_dropout_sync", type=bool, default=False) + +parser.add_argument("--rho_inner_loss", type=float, default=0.0) parser.add_argument("--nb_blocks", type=int, default=None) @@ -747,7 +751,7 @@ model = mygpt.MyGPT( dropout=args.dropout, attention_layer=args.attention, logger=log_string, - **sup_args, + args=args, ) model.to(device) @@ -905,7 +909,9 @@ for n_epoch in range(nb_epochs_finished, nb_epochs): nb_train_samples += input.size(0) nb_samples_seen += input.size(0) - total_loss = loss + (args.rho * inner_loss if args.rho > 0 else 0.0) + total_loss = loss + ( + args.rho_inner_loss * inner_loss if args.rho_inner_loss > 0 else 0.0 + ) it += 1 lr = get_lr(n_epoch, it) diff --git a/mygpt.py b/mygpt.py index fb24b9a..2d33574 100755 --- a/mygpt.py +++ b/mygpt.py @@ -202,7 +202,7 @@ class DumbRec(nn.Module): attention_dropout=0.0, len_max=1e5, logger=print, - **kwargs, + args, ): super().__init__() @@ -333,7 +333,7 @@ class KVRec(nn.Module): attention_dropout=0.0, len_max=1e5, logger=print, - **kwargs, + args, ): super().__init__() @@ -487,7 +487,7 @@ class Caterpillar(nn.Module): attention_dropout=0.0, len_max=1e5, logger=print, - **kwargs, + args, ): super().__init__() @@ -502,27 +502,12 @@ class Caterpillar(nn.Module): self.caterpillar_height = caterpillar_height self.attention_dropout = attention_dropout - ###################################################################### - # sup_args - - x = kwargs.get("gate_dropout") - if x is None: - self.proba_gate_dropout = 0.0 - else: - self.proba_gate_dropout = float(x) - - logger(f"self.proba_gate_dropout {self.proba_gate_dropout}") - - x = kwargs.get("default_bg") - if x is None: - default_bg = -math.log(caterpillar_height - 1) - else: - default_bg = float(x) - - logger(f"default_bg {default_bg}") + self.gate_dropout_proba = args.gate_dropout_proba + self.gate_dropout_sync = args.gate_dropout_sync ###################################################################### + default_bg = -math.log(caterpillar_height - 1) self.w_G = randw(nb_heads, caterpillar_height, dim_model) self.b_G = nn.Parameter(torch.full((nb_heads, caterpillar_height), default_bg)) @@ -639,7 +624,7 @@ class Caterpillar(nn.Module): next_V, next_K = recurrence(G, V, K) - if self.training and self.proba_gate_dropout > 0.0: + if self.training and self.gate_dropout_proba > 0.0: # G is NxHxRxT where r is the caterpillar's row. warnings.warn("gate dropout", RuntimeWarning) @@ -652,7 +637,7 @@ class Caterpillar(nn.Module): # Keep these mask for only some of the NxHxR kill = kill * ( - torch.rand(N, H, R, 1, device=G.device) <= self.proba_gate_dropout + torch.rand(N, H, R, 1, device=G.device) <= self.gate_dropout_proba ) # The coefficient to keep are the complementary @@ -661,10 +646,10 @@ class Caterpillar(nn.Module): masked_next_V, masked_next_K = recurrence(G * mask, V, K) next_V = next_V.detach() + (masked_next_V - masked_next_V.detach()) / ( - 1 - self.proba_gate_dropout + 1 - self.gate_dropout_proba ) next_K = next_K.detach() + (masked_next_K - masked_next_K.detach()) / ( - 1 - self.proba_gate_dropout + 1 - self.gate_dropout_proba ) self.rec_V[:, :, t0:t1] = next_V @@ -730,7 +715,7 @@ class QKVAttention(nn.Module): causal=False, attention_dropout=0.0, logger=print, - **kwargs, + args, ): super().__init__() @@ -823,7 +808,7 @@ class MyGPT(nn.Module): len_max=1e5, attention_layer="kvrec", logger=print, - **kwargs, + args, ): super().__init__() @@ -861,7 +846,7 @@ class MyGPT(nn.Module): causal=causal, attention_dropout=dropout, logger=logger, - **kwargs, + args, ) elif attention_layer == "dumbrec": return DumbRec( @@ -872,7 +857,7 @@ class MyGPT(nn.Module): nb_lines=nb_lines, attention_dropout=dropout, logger=logger, - **kwargs, + args, ) elif attention_layer == "kvrec": return KVRec( @@ -883,7 +868,7 @@ class MyGPT(nn.Module): nb_lines=nb_lines, attention_dropout=dropout, logger=logger, - **kwargs, + args, ) elif attention_layer == "caterpillar": return Caterpillar( @@ -895,7 +880,7 @@ class MyGPT(nn.Module): caterpillar_height=self.caterpillar_height, attention_dropout=dropout, logger=logger, - **kwargs, + args, ) else: raise ValueError(f"Unknown attention type {attention_layer}.")