From: Francois Fleuret Date: Fri, 16 Jun 2017 08:12:13 +0000 (+0200) Subject: Heavy fix. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=abbbb61852f54e90df6ac5b5f4dcb71d06f88f49;p=pysvrt.git Heavy fix. --- diff --git a/cnn-svrt.py b/cnn-svrt.py index 7bef242..694f035 100755 --- a/cnn-svrt.py +++ b/cnn-svrt.py @@ -184,15 +184,19 @@ for problem_number in range(1, 24): for p in model.parameters(): nb_parameters += p.numel() log_string('nb_parameters {:d}'.format(nb_parameters)) + need_to_train = False try: - model.load_state_dict(torch.load(model_filename)) log_string('loaded_model ' + model_filename) - except: + need_to_train = True + + if need_to_train: log_string('training_model ' + model_filename) + t = time.time() + if args.compress_vignettes: train_set = CompressedVignetteSet(problem_number, args.nb_train_batches, args.batch_size, @@ -208,6 +212,10 @@ for problem_number in range(1, 24): args.nb_test_batches, args.batch_size, cuda=torch.cuda.is_available()) + log_string('data_generation {:0.2f} samples / s'.format( + (train_set.nb_samples + test_set.nb_samples) / (time.time() - t)) + ) + train_model(model, train_set) torch.save(model.state_dict(), model_filename) log_string('saved_model ' + model_filename) diff --git a/vignette_set.py b/vignette_set.py index 72880ba..c46beea 100755 --- a/vignette_set.py +++ b/vignette_set.py @@ -32,11 +32,12 @@ import svrt ###################################################################### def generate_one_batch(s): - svrt.seed(s) - target = torch.LongTensor(self.batch_size).bernoulli_(0.5) + problem_number, batch_size, cuda, random_seed = s + svrt.seed(random_seed) + target = torch.LongTensor(batch_size).bernoulli_(0.5) input = svrt.generate_vignettes(problem_number, target) input = input.float().view(input.size(0), 1, input.size(1), input.size(2)) - if self.cuda: + if cuda: input = input.cuda() target = target.cuda() return [ input, target ] @@ -50,13 +51,16 @@ class VignetteSet: self.nb_batches = nb_batches self.nb_samples = self.nb_batches * self.batch_size - seed_list = torch.LongTensor(self.nb_batches).random_().tolist() + seeds = torch.LongTensor(self.nb_batches).random_() + mp_args = [] + for b in range(0, self.nb_batches): + mp_args.append( [ problem_number, batch_size, cuda, seeds[b] ]) # self.data = [] # for b in range(0, self.nb_batches): - # self.data.append(generate_one_batch(seed_list[b])) + # self.data.append(generate_one_batch(mp_args[b])) - self.data = Pool(cpu_count()).map(generate_one_batch, seed_list) + self.data = Pool(cpu_count()).map(generate_one_batch, mp_args) acc = 0.0 acc_sq = 0.0