From: François Fleuret Date: Sun, 18 Feb 2024 21:39:54 +0000 (+0100) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=a3f5378c684fb58b0dc839638e768c3a4b8e8a83;p=picoclvr.git Update. --- diff --git a/main.py b/main.py index 9f82594..55f2c2f 100755 --- a/main.py +++ b/main.py @@ -33,7 +33,7 @@ parser.add_argument( "--task", type=str, default="twotargets", - help="byheart, learnop, guessop, mixing, memory, twotargets, addition, picoclvr, mnist, maze, snake, stack, expr, rpl, grid, qmlp", + help="file, byheart, learnop, guessop, mixing, memory, twotargets, addition, picoclvr, mnist, maze, snake, stack, expr, rpl, grid, qmlp", ) parser.add_argument("--log_filename", type=str, default="train.log", help=" ") @@ -86,6 +86,11 @@ parser.add_argument("--overwrite_results", action="store_true", default=False) parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth") +############################## +# filetask + +parser.add_argument("--filetask_file", type=str, default=None) + ############################## # rpl options @@ -180,6 +185,12 @@ if args.result_dir is None: ###################################################################### default_task_args = { + "file": { + "model": "37M", + "batch_size": 25, + "nb_train_samples": 250000, + "nb_test_samples": 10000, + }, "addition": { "model": "352M", "batch_size": 25, @@ -390,7 +401,20 @@ picoclvr_pruner_eval = ( ###################################################################### -if args.task == "byheart": +if args.task == "file": + assert ( + args.filetask_file is not None + ), "You have to specify the task file with --filetask_file " + task = tasks.TaskFromFile( + args.filetask_file, + nb_train_samples=args.nb_train_samples, + nb_test_samples=args.nb_test_samples, + batch_size=args.batch_size, + device=device, + ) + args.max_percents_of_test_in_train = 0 + +elif args.task == "byheart": task = tasks.SandBox( problem=problems.ProblemByHeart(), nb_train_samples=args.nb_train_samples, diff --git a/tasks.py b/tasks.py index 08aa8ca..00b7a49 100755 --- a/tasks.py +++ b/tasks.py @@ -70,6 +70,141 @@ class Task: pass +class TaskFromFile(Task): + def tensorize(self, pairs): + len_max = max([len(x[0]) for x in pairs]) + + input = torch.cat( + [ + torch.tensor( + [ + [self.char2id[c] for c in s[0] + "#" * (len_max - len(s[0]))] + for s in pairs + ] + ) + ], + 0, + ).to("cpu") + + pred_mask = torch.cat( + [ + torch.tensor( + [ + [int(c) for c in s[1] + "0" * (len_max - len(s[1]))] + for s in pairs + ] + ) + ], + 0, + ).to("cpu") + + return input, pred_mask + + # trim all the tensors in the tuple z to remove as much token from + # left and right in the first tensor. If z is a tuple, all its + # elements are trimed according to the triming for the first + def trim(self, z, token="#"): + n = self.char2id[token] + if type(z) == tuple: + x = z[0] + i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0) + a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min() + return tuple([t[:, a:b] for t in z]) + else: + i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0) + a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min() + return z[:, a:b] + + def __init__( + self, + filename, + nb_train_samples, + nb_test_samples, + batch_size, + device=torch.device("cpu"), + ): + self.batch_size = batch_size + self.device = device + + pairs = [] + with open(filename, "r") as f: + for _ in range(nb_train_samples + nb_test_samples): + sequence = f.readline().strip() + pred_mask = f.readline().strip() + assert len(sequence) == len(pred_mask) + assert set(pred_mask) == {"0", "1", "2"}, f"{set(pred_mask)}" + pairs.append((sequence, pred_mask)) + + symbols = ["#"] + list(set("".join([x[0] for x in pairs])) - set(["#"])) + print("SANITY", symbols) + self.char2id = dict([(c, n) for n, c in enumerate(symbols)]) + self.id2char = dict([(n, c) for c, n in self.char2id.items()]) + + print(self.char2id) + + self.train_input, self.train_pred_masks = self.tensorize( + pairs[:nb_train_samples] + ) + self.test_input, self.test_pred_masks = self.tensorize(pairs[nb_train_samples:]) + + def batches(self, split="train", nb_to_use=-1, desc=None): + assert split in {"train", "test"} + input = self.train_input if split == "train" else self.test_input + if nb_to_use > 0: + input = input[:nb_to_use] + if desc is None: + desc = f"epoch-{split}" + for batch in tqdm.tqdm( + input.split(self.batch_size), dynamic_ncols=True, desc=desc + ): + yield self.trim(batch).to(self.device) + + def vocabulary_size(self): + return len(self.char2id) + + def tensor2str(self, t): + print(f"{type(t)=}") + return ["".join([self.id2char[x.item()] for x in s]) for s in t] + + def produce_results( + self, n_epoch, model, result_dir, logger, deterministic_synthesis + ): + correct = self.trim(self.test_input[:1000]).to(self.device) + result = correct.clone() + pred_mask = self.test_pred_masks[:1000, : result.size(1)].to(self.device) + ar_mask = (pred_mask > 0).long() + result *= 1 - ar_mask # paraaaaanoiaaaaaaa + + logger(f"----------------------------------------------------------") + + for e in self.tensor2str(result[:10]): + logger(f"test_before {e}") + + masked_inplace_autoregression( + model, + self.batch_size, + result, + ar_mask, + deterministic_synthesis, + device=self.device, + ) + + logger(f"----------------------------------------------------------") + + for e, c in zip(self.tensor2str(result[:10]), self.tensor2str(correct[:10])): + logger(f"test_after {e}") + logger(f"correct {c}") + + logger(f"----------------------------------------------------------") + + err_mask = (pred_mask == 2).long() + nb_total = err_mask.sum().item() + nb_correct = ((correct == result).long() * err_mask).sum().item() + + logger(f"test_performance {n_epoch} {nb_total=} {nb_correct=}") + logger(f"main_test_accuracy {n_epoch} {nb_correct / nb_total}") + + #################### import problems @@ -1484,6 +1619,7 @@ class Grid(Task): self.device = device self.batch_size = batch_size self.grid_factory = grid.GridFactory(size=size) + self.fraction_play = fraction_play if logger is not None: logger( @@ -1495,13 +1631,21 @@ class Grid(Task): fraction_play=fraction_play, progress_bar=lambda r: tqdm.tqdm(r), ) + self.test_descr = self.grid_factory.generate_samples( nb=nb_test_samples, fraction_play=0.0, progress_bar=lambda r: tqdm.tqdm(r) ) + if fraction_play > 0: + self.play_descr = self.grid_factory.generate_samples( + nb=25, fraction_play=1.0, progress_bar=lambda r: tqdm.tqdm(r) + ) + else: + self.play_descr = [] + # Build the tokenizer tokens = set() - for d in [self.train_descr, self.test_descr]: + for d in [self.train_descr, self.test_descr, self.play_descr]: for s in d: for t in s.strip().split(" "): tokens.add(t) @@ -1515,10 +1659,14 @@ class Grid(Task): self.t_nul = self.token2id["#"] self.t_true = self.token2id["true"] self.t_false = self.token2id["false"] + self.t_pipe = self.token2id["|"] # Tokenize the train and test sets self.train_input = self.str2tensor(self.train_descr) self.test_input = self.str2tensor(self.test_descr) + self.play_input = ( + None if len(self.play_descr) == 0 else self.str2tensor(self.play_descr) + ) def batches(self, split="train"): assert split in {"train", "test"} @@ -1566,41 +1714,31 @@ class Grid(Task): logger(f"test_performance {n_epoch} {nb_total=} {nb_correct=}") logger(f"main_test_accuracy {n_epoch} {nb_correct / nb_total}") - if n_epoch == 5 or n_epoch == 10 or n_epoch == 20: - if save_attention_image is None: - logger("no save_attention_image (is pycairo installed?)") - else: - for k in range(10): - ns = k # torch.randint(self.test_input.size(0), (1,)).item() - input = self.test_input[ns : ns + 1].clone() - with torch.autograd.no_grad(): - t = model.training - model.eval() - model.record_attention(True) - model(BracketedSequence(input)) - model.train(t) - ram = model.retrieve_attention() - model.record_attention(False) - - tokens_output = [self.id2token[t.item()] for t in input[0]] - tokens_input = ["n/a"] + tokens_output[:-1] - for n_head in range(ram[0].size(1)): - filename = os.path.join( - result_dir, - f"sandbox_attention_epoch_{n_epoch}_sample_{k}_head_{n_head}.pdf", - ) - attention_matrices = [m[0, n_head] for m in ram] - save_attention_image( - filename, - tokens_input, - tokens_output, - attention_matrices, - k_top=10, - # min_total_attention=0.9, - token_gap=12, - layer_gap=50, - ) - logger(f"wrote {filename}") + if self.play_input is not None: + result = self.play_input.clone() + ar_mask = (result == self.t_pipe).long().cumsum(dim=1).clamp(max=1) + result *= 1 - ar_mask # paraaaaanoiaaaaaaa + + logger(f"----------------------------------------------------------") + + for e in self.tensor2str(result[:10]): + logger(f"play_before {e}") + + masked_inplace_autoregression( + model, + self.batch_size, + result, + ar_mask, + deterministic_synthesis, + device=self.device, + ) + + logger(f"----------------------------------------------------------") + + for e in self.tensor2str(result[:10]): + logger(f"play_after {e}") + + logger(f"----------------------------------------------------------") ######################################################################