From: Francois Fleuret Date: Sat, 15 Dec 2018 20:32:35 +0000 (+0100) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=99fab4ddc7ee5fedf7a898a9263e2c271ea7d721;p=pytorch.git Update. --- diff --git a/mine_mnist.py b/mine_mnist.py index c22d7fe..0c485b2 100755 --- a/mine_mnist.py +++ b/mine_mnist.py @@ -11,8 +11,8 @@ import torch.nn.functional as F ###################################################################### if torch.cuda.is_available(): - device = torch.device('cuda') torch.backends.cudnn.benchmark = True + device = torch.device('cuda') else: device = torch.device('cpu') @@ -35,6 +35,18 @@ parser.add_argument('--mnist_classes', type = str, default = '0, 1, 3, 5, 6, 7, 8, 9', help = 'What MNIST classes to use') +parser.add_argument('--nb_classes', + type = int, default = 2, + help = 'How many classes for sequences') + +parser.add_argument('--nb_epochs', + type = int, default = 50, + help = 'How many epochs') + +parser.add_argument('--batch_size', + type = int, default = 100, + help = 'Batch size') + ###################################################################### def entropy(target): @@ -46,6 +58,12 @@ def entropy(target): probas /= probas.sum() return - (probas * probas.log()).sum().item() +def robust_log_mean_exp(x): + # a = x.max() + # return (x-a).exp().mean().log() + a + # a = x.max() + return x.exp().mean().log() + ###################################################################### args = parser.parse_args() @@ -130,8 +148,8 @@ def create_image_values_pairs(train = False): c = target b = a.new(a.size(0), 2) - b[:, 0].uniform_(10) - b[:, 1].uniform_(0.5) + b[:, 0].uniform_(0.0, 10.0) + b[:, 1].uniform_(0.0, 0.5) b[:, 1] += b[:, 0] + target.float() return a, b, c @@ -140,45 +158,35 @@ def create_image_values_pairs(train = False): def create_sequences_pairs(train = False): nb, length = 10000, 1024 - noise_level = 1e-2 + noise_level = 2e-2 - nb_classes = 4 - ha = torch.randint(nb_classes, (nb, ), device = device) + 1 - # hb = torch.randint(nb_classes, (nb, ), device = device) + ha = torch.randint(args.nb_classes, (nb, ), device = device) + 1 + # hb = torch.randint(args.nb_classes, (nb, ), device = device) hb = ha pos = torch.empty(nb, device = device).uniform_(0.0, 0.9) a = torch.linspace(0, 1, length, device = device).view(1, -1).expand(nb, -1) a = a - pos.view(nb, 1) a = (a >= 0).float() * torch.exp(-a * math.log(2) / 0.1) - a = a * ha.float().view(-1, 1).expand_as(a) / (1 + nb_classes) + a = a * ha.float().view(-1, 1).expand_as(a) / (1 + args.nb_classes) noise = a.new(a.size()).normal_(0, noise_level) a = a + noise - pos = torch.empty(nb, device = device).uniform_(0.5) + pos = torch.empty(nb, device = device).uniform_(0.0, 0.5) b1 = torch.linspace(0, 1, length, device = device).view(1, -1).expand(nb, -1) b1 = b1 - pos.view(nb, 1) - b1 = (b1 >= 0).float() * torch.exp(-b1 * math.log(2) / 0.1) - pos = pos + hb.float() / (nb_classes + 1) * 0.5 + b1 = (b1 >= 0).float() * torch.exp(-b1 * math.log(2) / 0.1) * 0.25 + pos = pos + hb.float() / (args.nb_classes + 1) * 0.5 b2 = torch.linspace(0, 1, length, device = device).view(1, -1).expand(nb, -1) b2 = b2 - pos.view(nb, 1) - b2 = (b2 >= 0).float() * torch.exp(-b2 * math.log(2) / 0.1) + b2 = (b2 >= 0).float() * torch.exp(-b2 * math.log(2) / 0.1) * 0.25 b = b1 + b2 noise = b.new(b.size()).normal_(0, noise_level) b = b + noise - ###################################################################### - # for k in range(10): - # file = open(f'/tmp/dat{k:02d}', 'w') - # for i in range(a.size(1)): - # file.write(f'{a[k, i]:f} {b[k,i]:f}\n') - # file.close() - # exit(0) - ###################################################################### - - a = (a - a.mean()) / a.std() - b = (b - b.mean()) / b.std() + # a = (a - a.mean()) / a.std() + # b = (b - b.mean()) / b.std() return a, b, ha @@ -248,17 +256,21 @@ class NetForImageValuesPair(nn.Module): class NetForSequencePair(nn.Module): def feature_model(self): + kernel_size = 11 + pooling_size = 4 return nn.Sequential( - nn.Conv1d(1, self.nc, kernel_size = 5), - nn.MaxPool1d(2), nn.ReLU(), - nn.Conv1d(self.nc, self.nc, kernel_size = 5), - nn.MaxPool1d(2), nn.ReLU(), - nn.Conv1d(self.nc, self.nc, kernel_size = 5), - nn.MaxPool1d(2), nn.ReLU(), - nn.Conv1d(self.nc, self.nc, kernel_size = 5), - nn.MaxPool1d(2), nn.ReLU(), - nn.Conv1d(self.nc, self.nc, kernel_size = 5), - nn.MaxPool1d(2), nn.ReLU(), + nn.Conv1d( 1, self.nc, kernel_size = kernel_size), + nn.AvgPool1d(pooling_size), + nn.LeakyReLU(), + nn.Conv1d(self.nc, self.nc, kernel_size = kernel_size), + nn.AvgPool1d(pooling_size), + nn.LeakyReLU(), + nn.Conv1d(self.nc, self.nc, kernel_size = kernel_size), + nn.AvgPool1d(pooling_size), + nn.LeakyReLU(), + nn.Conv1d(self.nc, self.nc, kernel_size = kernel_size), + nn.AvgPool1d(pooling_size), + nn.LeakyReLU(), ) def __init__(self): @@ -299,20 +311,25 @@ elif args.data == 'image_values_pair': elif args.data == 'sequence_pair': create_pairs = create_sequences_pairs model = NetForSequencePair() + ###################################################################### + a, b, c = create_pairs() + for k in range(10): + file = open(f'/tmp/train_{k:02d}.dat', 'w') + for i in range(a.size(1)): + file.write(f'{a[k, i]:f} {b[k,i]:f}\n') + file.close() + # exit(0) + ###################################################################### else: raise Exception('Unknown data ' + args.data) ###################################################################### -nb_epochs, batch_size = 50, 100 - print('nb_parameters %d' % sum(x.numel() for x in model.parameters())) -optimizer = torch.optim.Adam(model.parameters(), lr = 1e-3) - model.to(device) -for e in range(nb_epochs): +for e in range(args.nb_epochs): input_a, input_b, classes = create_pairs(train = True) @@ -320,17 +337,19 @@ for e in range(nb_epochs): acc_mi = 0.0 - for batch_a, batch_b, batch_br in zip(input_a.split(batch_size), - input_b.split(batch_size), - input_br.split(batch_size)): + optimizer = torch.optim.Adam(model.parameters(), lr = 1e-4) + + for batch_a, batch_b, batch_br in zip(input_a.split(args.batch_size), + input_b.split(args.batch_size), + input_br.split(args.batch_size)): mi = model(batch_a, batch_b).mean() - model(batch_a, batch_br).exp().mean().log() - loss = - mi acc_mi += mi.item() + loss = - mi optimizer.zero_grad() loss.backward() optimizer.step() - acc_mi /= (input_a.size(0) // batch_size) + acc_mi /= (input_a.size(0) // args.batch_size) print('%d %.04f %.04f' % (e + 1, acc_mi / math.log(2), entropy(classes) / math.log(2))) @@ -340,18 +359,17 @@ for e in range(nb_epochs): input_a, input_b, classes = create_pairs(train = False) -for e in range(nb_epochs): - input_br = input_b[torch.randperm(input_b.size(0))] +input_br = input_b[torch.randperm(input_b.size(0))] - acc_mi = 0.0 +acc_mi = 0.0 - for batch_a, batch_b, batch_br in zip(input_a.split(batch_size), - input_b.split(batch_size), - input_br.split(batch_size)): - mi = model(batch_a, batch_b).mean() - model(batch_a, batch_br).exp().mean().log() - acc_mi += mi.item() +for batch_a, batch_b, batch_br in zip(input_a.split(args.batch_size), + input_b.split(args.batch_size), + input_br.split(args.batch_size)): + mi = model(batch_a, batch_b).mean() - model(batch_a, batch_br).exp().mean().log() + acc_mi += mi.item() - acc_mi /= (input_a.size(0) // batch_size) +acc_mi /= (input_a.size(0) // args.batch_size) print('test %.04f %.04f'%(acc_mi / math.log(2), entropy(classes) / math.log(2))) diff --git a/mine_mnist.py.xremote b/mine_mnist.py.xremote index 3217f50..2be51ae 100755 --- a/mine_mnist.py.xremote +++ b/mine_mnist.py.xremote @@ -2,3 +2,4 @@ @XREMOTE_EXEC: ~/conda/bin/python @XREMOTE_PRE: ln -s ~/data/pytorch ./data @XREMOTE_PRE: killall -q -9 python || true +@XREMOTE_GET: *.dat \ No newline at end of file