From: François Fleuret Date: Tue, 9 Jul 2024 15:11:56 +0000 (+0300) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=870d6808ac616b81cae00d9cb1f4de29bae23410;p=culture.git Update. --- diff --git a/grids.py b/grids.py index 47e5861..ba09225 100755 --- a/grids.py +++ b/grids.py @@ -32,11 +32,16 @@ class Grids(problem.Problem): ("gray", [128, 128, 128]), ] - def __init__(self, device=torch.device("cpu")): + def __init__( + self, + max_nb_cached_chunks=None, + chunk_size=None, + nb_threads=-1, + ): self.colors = torch.tensor([c for _, c in self.named_colors]) self.height = 10 self.width = 10 - self.device = device + super().__init__(max_nb_cached_chunks, chunk_size, nb_threads) ###################################################################### @@ -110,10 +115,10 @@ class Grids(problem.Problem): c = c.long()[:, None] c = ( (1 - ((c == 1).long() + (c == 0).long() + (c == -1).long())) - * torch.tensor([64, 64, 64], device=c.device) - + (c == 1).long() * torch.tensor([0, 255, 0], device=c.device) - + (c == 0).long() * torch.tensor([255, 255, 255], device=c.device) - + (c == -1).long() * torch.tensor([255, 0, 0], device=c.device) + * torch.tensor([64, 64, 64]) + + (c == 1).long() * torch.tensor([0, 255, 0]) + + (c == 0).long() * torch.tensor([255, 255, 255]) + + (c == -1).long() * torch.tensor([255, 0, 0]) ) y[...] = c[:, :, None, None] @@ -194,122 +199,41 @@ class Grids(problem.Problem): def nb_token_values(self): return len(self.colors) - # @torch.compile - def rec_coo_(self, nb_rec, min_height=3, min_width=3): - # @torch.compile - def overlap(ia, ja, ib, jb): - return ( - ia[1] >= ib[0] and ia[0] <= ib[1] and ja[1] >= jb[0] and ja[0] <= jb[1] - ) - - if nb_rec == 3: - while True: - i = torch.randint(self.height + 1, (nb_rec, 2)).sort(dim=1).values - j = torch.randint(self.width + 1, (nb_rec, 2)).sort(dim=1).values - if ( - not ( - overlap(i[0], j[0], i[1], j[1]) - or overlap(i[0], j[0], i[2], j[2]) - or overlap(i[1], j[1], i[2], j[2]) - ) - and (i[:, 1] - i[:, 0]).min() >= min_height - and (j[:, 1] - j[:, 0]).min() >= min_width - ): - break - return ( - (i[0, 0], j[0, 0], i[0, 1], j[0, 1]), - (i[1, 0], j[1, 0], i[1, 1], j[1, 1]), - (i[2, 0], j[2, 0], i[2, 1], j[2, 1]), - ) - - # That's quite a tensorial spaghetti mess to sample - # non-overlapping rectangles quickly, but made the generation of - # 100k samples go from 1h50 with a lame pure python code to 3min30s - # with this one. - # @torch.compile def rec_coo(self, nb_rec, min_height=3, min_width=3): - nb_trials = 200 - + N = 10 while True: - v = ( - ( - torch.rand(nb_trials * nb_rec, self.height + 1, device=self.device) - .sort(dim=-1) - .indices - < 2 + i = torch.randint(self.height, (N, nb_rec, 2)).sort(dim=-1).values + j = torch.randint(self.width, (N, nb_rec, 2)).sort(dim=-1).values + if nb_rec == 2: + A_i1, A_i2, A_j1, A_j2 = i[:, 0, 0], i[:, 0, 1], j[:, 0, 0], j[:, 0, 1] + B_i1, B_i2, B_j1, B_j2 = i[:, 1, 0], i[:, 1, 1], j[:, 1, 0], j[:, 1, 1] + no_overlap = torch.logical_not( + (A_i1 > B_i2) & (A_i2 < B_i1) & (A_j1 > B_j1) & (A_j2 < B_j1) ) - .long() - .cumsum(dim=1) - == 1 - ).long() - - h = ( - ( - torch.rand(nb_trials * nb_rec, self.width + 1, device=self.device) - .sort(dim=-1) - .indices - < 2 + i, j = i[no_overlap], j[no_overlap] + elif nb_rec == 3: + A_i1, A_i2, A_j1, A_j2 = i[:, 0, 0], i[:, 0, 1], j[:, 0, 0], j[:, 0, 1] + B_i1, B_i2, B_j1, B_j2 = i[:, 1, 0], i[:, 1, 1], j[:, 1, 0], j[:, 1, 1] + C_i1, C_i2, C_j1, C_j2 = i[:, 2, 0], i[:, 2, 1], j[:, 2, 0], j[:, 2, 1] + no_overlap = ( + torch.logical_not( + (A_i1 > B_i2) & (A_i2 < B_i1) & (A_j1 > B_j1) & (A_j2 < B_j1) + ) + & torch.logical_not( + (A_i1 > C_i2) & (A_i2 < C_i1) & (A_j1 > C_j1) & (A_j2 < C_j1) + ) + & torch.logical_not( + (B_i1 > C_i2) & (B_i2 < C_i1) & (B_j1 > C_j1) & (B_j2 < C_j1) + ) ) - .long() - .cumsum(dim=1) - == 1 - ).long() - - i = torch.logical_and( - v.sum(dim=-1) >= min_height, h.sum(dim=-1) >= min_width - ) - - v, h = v[i], h[i] - v = v[: v.size(0) - v.size(0) % nb_rec] - h = h[: h.size(0) - h.size(0) % nb_rec] - v = v.reshape(v.size(0) // nb_rec, nb_rec, -1) - h = h.reshape(h.size(0) // nb_rec, nb_rec, -1) - - r = v[:, :, :, None] * h[:, :, None, :] - - valid = r.sum(dim=1).flatten(1).max(dim=-1).values == 1 - - v = v[valid] - h = h[valid] + i, j = (i[no_overlap], j[no_overlap]) + else: + assert nb_rec == 1 - if v.size(0) > 0: + if i.size(0) > 1: break - av = torch.arange(v.size(2), device=self.device)[None, :] - ah = torch.arange(h.size(2), device=self.device)[None, :] - - return [ - (i1.item(), j1.item(), i2.item() + 1, j2.item() + 1) - for i1, j1, i2, j2 in zip( - v.size(2) - (v[0] * (v.size(2) - av)).max(dim=-1).values, - h.size(2) - (h[0] * (h.size(2) - ah)).max(dim=-1).values, - (v[0] * av).max(dim=-1).values, - (h[0] * ah).max(dim=-1).values, - ) - ] - - # @torch.compile - def rec_coo_(self, x, n, min_height=3, min_width=3): - collision = x.new(x.size()) - while True: - collision[...] = 0 - result = [] - for _ in range(n): - while True: - i1, i2 = torch.randint(x.size(0), (2,)) - if i1 + min_height <= i2: - break - while True: - j1, j2 = torch.randint(x.size(1), (2,)) - if j1 + min_width <= j2: - break - collision[i1:i2, j1:j2] += 1 - if collision.max() > 1: - break - result.append((i1, j1, i2, j2)) - if collision.max() == 1: - break - return result + return [(i[0, k, 0], j[0, k, 0], i[0, k, 1], j[0, k, 1]) for k in range(nb_rec)] ###################################################################### @@ -478,29 +402,62 @@ class Grids(problem.Problem): return no, nq, nq_diag - # @torch.compile def task_count(self, A, f_A, B, f_B): N = (torch.randint(4, (1,)) + 2).item() c = torch.randperm(len(self.colors) - 1)[:N] + 1 for X, f_X in [(A, f_A), (B, f_B)]: + l_q = torch.randperm(self.height * self.width)[ + : self.height * self.width // 20 + ] + l_d = torch.randint(N, l_q.size()) nb = torch.zeros(N, dtype=torch.int64) - q = torch.randint(N, (self.height * self.width,)) - k = torch.randperm(self.height * self.width) - for p in range(self.height * self.width): - i, j = k[p] % self.height, k[p] // self.height - no, nq, nq_diag = self.contact(X, i, j, c[q[p]]) - if no == 0 and nq_diag == 0: - if nq == 0: - if nb[q[p]] < self.width: - X[i, j] = c[q[p]] - nb[q[p]] += 1 - if nq == 1: - X[i, j] = c[q[p]] - - for n in range(N): - for j in range(nb[n]): - f_X[n, j] = c[n] + + for q, e in zip(l_q, l_d): + d = c[e] + i, j = q % self.height, q // self.height + if ( + nb[e] < self.width + and X[max(0, i - 1) : i + 2, max(0, j - 1) : j + 2] == 0 + ).all(): + X[i, j] = d + nb[e] += 1 + + l_q = torch.randperm((self.height - 2) * (self.width - 2))[ + : self.height * self.width // 2 + ] + l_d = torch.randint(N, l_q.size()) + for q, e in zip(l_q, l_d): + d = c[e] + i, j = q % (self.height - 2) + 1, q // (self.height - 2) + 1 + a1, a2, a3 = X[i - 1, j - 1 : j + 2] + a8, a4 = X[i, j - 1], X[i, j + 1] + a7, a6, a5 = X[i + 1, j - 1 : j + 2] + if ( + X[i, j] == 0 + and nb[e] < self.width + and (a2 == 0 or a2 == d) + and (a4 == 0 or a4 == d) + and (a6 == 0 or a6 == d) + and (a8 == 0 or a8 == d) + and (a1 == 0 or a2 == d or a8 == d) + and (a3 == 0 or a4 == d or a2 == d) + and (a5 == 0 or a6 == d or a4 == d) + and (a7 == 0 or a8 == d or a6 == d) + ): + o = ( + (a2 != 0).long() + + (a4 != 0).long() + + (a6 != 0).long() + + (a8 != 0).long() + ) + if o <= 1: + X[i, j] = d + nb[e] += 1 - o + + for e in range(N): + for j in range(nb[e]): + f_X[e, j] = c[e] # @torch.compile def task_trajectory(self, A, f_A, B, f_B): @@ -747,9 +704,7 @@ class Grids(problem.Problem): f_Bs = answers return (Bs == f_Bs).long().min(dim=-1).values > 0 - def generate_prompts_and_answers( - self, nb, tasks=None, progress_bar=False, device="cpu" - ): + def generate_prompts_and_answers_(self, nb, tasks=None, progress_bar=False): if tasks is None: tasks = self.all_tasks() @@ -803,6 +758,7 @@ class Grids(problem.Problem): if __name__ == "__main__": import time + # grids = Grids(max_nb_cached_chunks=5, chunk_size=100, nb_threads=4) grids = Grids() # nb = 1000 @@ -816,22 +772,22 @@ if __name__ == "__main__": # print(f"{prompts.size(0)/delay:02f} seq/s") # exit(0) - if True: - nb = 72 + # if True: + # nb = 72 - for t in grids.all_tasks(): - # for t in [grids.task_ortho]: - print(t.__name__) - prompts, answers = grids.generate_prompts_and_answers(nb, tasks=[t]) - grids.save_quizzes("/tmp", t.__name__, prompts[:nb], answers[:nb], nrow=4) + # for t in grids.all_tasks(): + # for t in [grids.task_count]: + # print(t.__name__) + # prompts, answers = grids.generate_prompts_and_answers_(nb, tasks=[t]) + # grids.save_quizzes("/tmp", t.__name__, prompts[:nb], answers[:nb], nrow=4) - exit(0) + # exit(0) - nb = 500 + nb = 1000 for t in grids.all_tasks(): start_time = time.perf_counter() - prompts, answers = grids.generate_prompts_and_answers(nb, tasks=[t]) + prompts, answers = grids.generate_prompts_and_answers_(nb, tasks=[t]) delay = time.perf_counter() - start_time print(f"{t.__name__} {prompts.size(0)/delay:02f} seq/s") diff --git a/main.py b/main.py index 9c3d7f1..aefc3a1 100755 --- a/main.py +++ b/main.py @@ -15,7 +15,6 @@ import ffutils import mygpt import sky, grids, quiz_machine -from problem import MultiThreadProblem # world quizzes vs. culture quizzes @@ -78,7 +77,7 @@ parser.add_argument("--deterministic_synthesis", action="store_true", default=Fa parser.add_argument("--problem", type=str, default="grids") -parser.add_argument("--multi_thread_problem", action="store_true", default=False) +parser.add_argument("--nb_threads", type=int, default=-1) parser.add_argument("--nb_gpts", type=int, default=5) @@ -125,7 +124,7 @@ if args.result_dir is None: default_args = { "model": "37M", - "batch_size": 100, + "batch_size": 25, "nb_train_samples": 100000, "nb_test_samples": 10000, } @@ -240,17 +239,22 @@ if args.problem == "sky": nb_birds=args.sky_nb_birds, nb_iterations=args.sky_nb_iterations, speed=args.sky_speed, + max_nb_cached_chunks=args.nb_train_samples // 100, + chunk_size=100, + nb_threads=args.nb_threads, ) back_accuracy = False elif args.problem == "grids": - problem = grids.Grids(device=device) + problem = grids.Grids( + device=device, + max_nb_cached_chunks=args.nb_train_samples // 100, + chunk_size=100, + nb_threads=args.nb_threads, + ) back_accuracy = True else: raise ValueError -if args.multi_thread_problem: - problem = MultiThreadProblem(problem, args.nb_train_samples, chunk_size=1000) - quiz_machine = quiz_machine.QuizMachine( problem=problem, nb_train_samples=args.nb_train_samples, @@ -387,8 +391,13 @@ def run_tests(model, quiz_machine, deterministic_synthesis): ###################################################################### +def standard_validity(logproba): + l = logproba.sort(dim=-1).values + return logical_and(l[0] < math.log(0.5), l[1] > math.log(0.95)) + + def valid_c_quizzes(recorded, criteria): - result = [q[criteria(c)] for q, c in recorded] + result = [q[criteria(lp)] for q, lp in recorded] return torch.cat(result, dim=0) if len(result) > 0 else torch.tensor([]) @@ -400,6 +409,80 @@ def create_c_quizzes( quiz_machine, nb_for_train=1000, nb_for_test=100, +): + quizzes_and_logproba_records = [] + + nb_to_create = nb_for_train + nb_for_test + + # ------------------------------------------------------------ + + file_name = os.path.join(args.result_dir, f"culture_c_quiz_{n_epoch:04d}_logp.dat") + + with open(file_name, "w") as logp_file: + while ( + valid_c_quizzes(quizzes_and_logproba_records, standard_validity).size(0) + < nb_to_create + ): + # Select a model at random to generate the new quizzes + + model_for_generation = models[torch.randint(len(models), (1,))] + + c_quizzes = quiz_machine.generate_quizzes( + nb_to_create, + model_for_generation=model_for_generation, + temperature=args.generation_temperature, + ) + + c_quizzes = c_quizzes[quiz_machine.non_trivial(c_quizzes)] + + if c_quizzes.size(0) > 0: + logproba = c_quizzes.new(c_quizzes.size(0), len(models)) + for q, l in zip( + c_quizzes.split(args.batch_size), logits.split(args.batch_size) + ): + for model in models: + l[model.id] = F.cross_entropy(model(q)) + + for l in logproba: + s = " ".join([str(x.item()) for x in l]) + logp_file.write(s + "\n") + + quizzes_and_logproba_records.append((c_quizzes, logproba)) + + nb_validated = valid_c_quizzes( + quizzes_and_logproba_records, standard_validity + ).size(0) + + log_string( + f"keep c_quizzes model {model_for_generation.id} nb_accumulated {nb_validated} / {nb_to_create}" + ) + + # store the new c_quizzes which have been validated + + new_c_quizzes = valid_c_quizzes(quizzes_and_logproba_records, standard_validity) + + quiz_machine.reverse_random_half_in_place(new_c_quizzes) + + quiz_machine.store_c_quizzes(new_c_quizzes[:nb_for_train], for_train=True) + quiz_machine.store_c_quizzes(new_c_quizzes[nb_for_train:], for_train=False) + + # save a bunch of images to investigate what quizzes with a + # certain nb of correct predictions look like + + q = new_c_quizzes[:72] + + if q.size(0) > 0: + quiz_machine.save_quizzes(args.result_dir, f"culture_c_quiz_{n_epoch:04d}", q) + + +###################################################################### + + +def create_c_quizzes_( + models, + quiz_machine, + nb_for_train=1000, + nb_for_test=100, ): quizzes_and_nb_correct_records = [] @@ -428,6 +511,14 @@ def create_c_quizzes( temperature=args.generation_temperature, ) + # if args.prediction_correctness: + + # else: + # logproba = quiz_machine.new(quiz_machine.size(0), len(models)) + # for q,l in zip(quizzes.split(args.batch_size), logits.split(args.batch_size)): + # for model in models: + # l[...] = F.cross_entropy(model(q)) + c_quizzes = c_quizzes[quiz_machine.non_trivial(c_quizzes)] if c_quizzes.size(0) > 0: diff --git a/problem.py b/problem.py index a49634d..eceb904 100755 --- a/problem.py +++ b/problem.py @@ -9,14 +9,24 @@ import threading, queue, torch, tqdm class Problem: + def __init__(self, max_nb_cached_chunks=None, chunk_size=None, nb_threads=-1): + if nb_threads > 0: + self.chunk_size = chunk_size + self.queue = queue.Queue(maxsize=max_nb_cached_chunks) + for _ in range(nb_threads): + threading.Thread(target=self.fill_cache, daemon=True).start() + self.rest = None + else: + self.queue = None + def nb_token_values(self): pass def trivial_prompts_and_answers(self, prompts, answers): pass - # returns two tensors nb x D and nb x D' - def generate_prompts_and_answers(self, nb): + # The one to implement, returns two tensors nb x D and nb x D' + def generate_prompts_and_answers_(self, nb): pass # save a file to vizualize quizzes, you can save a txt or png file @@ -31,49 +41,16 @@ class Problem: ): pass - -class MultiThreadProblem: - def __init__(self, problem, max_nb_cached_chunks, chunk_size, nb_threads=1): - self.problem = problem - self.chunk_size = chunk_size - self.queue = queue.Queue(maxsize=max_nb_cached_chunks) - for _ in range(nb_threads): - threading.Thread(target=self.fill_cache, daemon=True).start() - self.rest = None - - def nb_token_values(self): - return self.problem.nb_token_values() - - def save_quizzes( - self, - result_dir, - filename_prefix, - prompts, - answers, - predicted_prompts=None, - predicted_answers=None, - ): - self.problem.save_quizzes( - result_dir, - filename_prefix, - prompts, - answers, - predicted_prompts=None, - predicted_answers=None, - ) - def fill_cache(self): while True: - prompts, answers = self.problem.generate_prompts_and_answers( - self.chunk_size - ) + prompts, answers = self.generate_prompts_and_answers_(self.chunk_size) self.queue.put((prompts.to("cpu"), answers.to("cpu")), block=True) - def trivial_prompts_and_answers(self, prompts, answers): - return self.problem.trivial_prompts_and_answers(prompts, answers) - def generate_prompts_and_answers(self, nb): + if self.queue is None: + return self.generate_prompts_and_answers_(nb) + if self.rest is not None: prompts, answers = rest else: diff --git a/sky.py b/sky.py index ed440d3..1768a81 100755 --- a/sky.py +++ b/sky.py @@ -50,7 +50,11 @@ class Sky(problem.Problem): speed=2, nb_iterations=2, avoid_collision=True, + max_nb_cached_chunks=None, + chunk_size=None, + nb_threads=-1, ): + super().__init__(max_nb_cached_chunks, chunk_size, nb_threads) self.height = height self.width = width self.nb_birds = nb_birds