From: Francois Fleuret Date: Fri, 31 Mar 2017 06:14:04 +0000 (+0200) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=7e2780052c458a329fc36253b83eb5194ffb7fed;p=flatland.git Update. --- diff --git a/Makefile b/Makefile index 3483558..f639424 100644 --- a/Makefile +++ b/Makefile @@ -34,9 +34,9 @@ all: flatland_generator.so TAGS TAGS: *.cc *.h etags *.cc *.h -flatland_generator.so: sequence_generator.o misc.o \ - universe.o \ - polygon.o \ +flatland_generator.so: \ + sequence_generator.o misc.o \ + polygon.o universe.o \ canvas.o canvas_cairo.o $(CXX) $(CXXFLAGS) $(LDFLAGS) -shared -fPIC -o $@ $^ diff --git a/flatland.c b/flatland.c index 77f89aa..a77d7c1 100644 --- a/flatland.c +++ b/flatland.c @@ -21,6 +21,7 @@ THByteTensor *generate_sequence(long nb_sequences, long nb_images, long image_height, long image_width, + int nb_shapes, int random_shape_size, int random_colors) { long nb_channels = 3; @@ -46,7 +47,7 @@ THByteTensor *generate_sequence(long nb_sequences, for(s = 0; s < nb_sequences; s++) { a = THByteTensor_storage(result)->data + THByteTensor_storageOffset(result) + s * st0; - fl_generate_sequence(nb_images, image_width, image_height, + fl_generate_sequence(nb_images, image_width, image_height, nb_shapes, random_shape_size, random_colors, tmp_buffer); unsigned char *r = tmp_buffer; diff --git a/flatland.h b/flatland.h index e86533e..ba91f67 100644 --- a/flatland.h +++ b/flatland.h @@ -2,4 +2,5 @@ THByteTensor *generate_sequence(long nb_sequences, long nb_images, long image_height, long image_width, + int nb_shapes, int random_shape_size, int random_colors); diff --git a/sequence_generator.cc b/sequence_generator.cc index 0ebce0d..ddc337b 100644 --- a/sequence_generator.cc +++ b/sequence_generator.cc @@ -67,12 +67,14 @@ void draw_grabbing_point_on_canvas(CanvasCairo *canvas, scalar_t scaling, extern "C" void fl_generate_sequence(int nb_images, int width, int height, + int nb_shapes, int random_shape_size, int random_colors, unsigned char *output) { - const scalar_t world_width = width * 8; - const scalar_t world_height = height * 8; - const scalar_t scaling = 0.125; + const scalar_t super_definition = 8; + const scalar_t world_width = width * super_definition; + const scalar_t world_height = height * super_definition; + const scalar_t scaling = 1 / super_definition; const scalar_t dt = 0.1; const int nb_iterations_per_steps = 5; @@ -87,7 +89,6 @@ extern "C" void fl_generate_sequence(int nb_images, int every_nth = 16; int nb_simulated_frames = 1 + (nb_images - 1) * every_nth; int random_grasp = 1; - int nb_shapes = 10; Universe *universe; Polygon *grabbed_polygon; @@ -110,6 +111,9 @@ extern "C" void fl_generate_sequence(int nb_images, int failed; + int total_nb_attempts = 0; + const int max_total_nb_attempts = 1000000; + do { if(random_grasp) { grab_start_x = world_width * (0.1 + 0.8 * drand48()); @@ -185,6 +189,7 @@ extern "C" void fl_generate_sequence(int nb_images, } grabbed_polygon = universe->pick_polygon(grab_start_x, grab_start_y); + } while(!grabbed_polygon); failed = 0; @@ -226,6 +231,14 @@ extern "C" void fl_generate_sequence(int nb_images, } } } + + total_nb_attempts++; + + if(total_nb_attempts >= max_total_nb_attempts) { + cerr << "There was " << max_total_nb_attempts << " attempts at generating the sequences." << endl; + abort(); + } + } while(failed); for(int t = 0; t < nb_images; t++) { diff --git a/sequence_generator.h b/sequence_generator.h index 76f1d33..7bfc7ea 100644 --- a/sequence_generator.h +++ b/sequence_generator.h @@ -5,6 +5,7 @@ extern "C" { void fl_generate_sequence(int nb_images, int width, int height, + int nb_shapes, int random_shape_size, int random_colors, unsigned char *output); diff --git a/test.py b/test.py index 0a065fa..ac3eb7e 100755 --- a/test.py +++ b/test.py @@ -2,13 +2,57 @@ import torch import torchvision -from torchvision import datasets +import argparse from _ext import flatland ###################################################################### -def sequences_to_image(x, gap=1, gap_color = (0, 128, 255)): +parser = argparse.ArgumentParser( + description='Dummy test of the flatland sequence generation.', + formatter_class=argparse.ArgumentDefaultsHelpFormatter +) + +parser.add_argument('--seed', + type = int, default = 0, + help = 'Random seed, < 0 is no seeding') + +parser.add_argument('--width', + type = int, default = 80, + help = 'Image width') + +parser.add_argument('--height', + type = int, default = 80, + help = 'Image height') + +parser.add_argument('--nb_shapes', + type = int, default = 10, + help = 'Image height') + +parser.add_argument('--nb_sequences', + type = int, default = 1, + help = 'How many sequences to generate') + +parser.add_argument('--nb_images_per_sequences', + type = int, default = 3, + help = 'How many images per sequence') + +parser.add_argument('--randomize_colors', + action='store_true', default=False, + help = 'Should the shapes be of different colors') + +parser.add_argument('--randomize_shape_size', + action='store_true', default=False, + help = 'Should the shapes be of different size') + +args = parser.parse_args() + +if args.seed >= 0: + torch.manual_seed(args.seed) + +###################################################################### + +def sequences_to_image(x, gap = 1, gap_color = (0, 128, 255)): from PIL import Image nb_sequences = x.size(0) @@ -26,9 +70,7 @@ def sequences_to_image(x, gap=1, gap_color = (0, 128, 255)): gap + nb_sequences * (height + gap), gap + nb_images_per_sequences * (width + gap)) - result[0].fill_(gap_color[0]) - result[1].fill_(gap_color[1]) - result[2].fill_(gap_color[2]) + result.copy_(torch.Tensor(gap_color).view(-1, 1, 1).expand_as(result)) for s in range(0, nb_sequences): for i in range(0, nb_images_per_sequences): @@ -42,6 +84,11 @@ def sequences_to_image(x, gap=1, gap_color = (0, 128, 255)): ###################################################################### -x = flatland.generate_sequence(10, 6, 80, 80, True, True) +x = flatland.generate_sequence(args.nb_sequences, + args.nb_images_per_sequences, + args.height, args.width, + args.nb_shapes, + args.randomize_colors, + args.randomize_shape_size) -sequences_to_image(x, gap = 2, gap_color = (0, 0, 0)).save('sequences.png') +sequences_to_image(x, gap = 1, gap_color = (0, 0, 0)).save('sequences.png')