From: François Fleuret Date: Sat, 11 Mar 2023 19:31:07 +0000 (+0100) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=61cd7a140e44ccb966bad941fa31e395e51e50e2;p=beaver.git Update. --- diff --git a/beaver.py b/beaver.py index 4d4f98d..920a446 100755 --- a/beaver.py +++ b/beaver.py @@ -38,9 +38,11 @@ parser.add_argument("--seed", type=int, default=0) parser.add_argument("--nb_epochs", type=int, default=25) -parser.add_argument("--batch_size", type=int, default=100) +parser.add_argument("--nb_train_samples", type=int, default=200000) -parser.add_argument("--data_size", type=int, default=-1) +parser.add_argument("--nb_test_samples", type=int, default=50000) + +parser.add_argument("--batch_size", type=int, default=25) parser.add_argument("--optim", type=str, default="adam") @@ -170,16 +172,23 @@ class TaskMaze(Task): s = s.reshape(s.size(0), -1, self.height, self.width) return (s[:, k] for k in range(s.size(1))) - def __init__(self, batch_size, height, width, nb_walls, device=torch.device("cpu")): + def __init__( + self, + nb_train_samples, + nb_test_samples, + batch_size, + height, + width, + nb_walls, + device=torch.device("cpu"), + ): self.batch_size = batch_size self.height = height self.width = width self.device = device - nb = args.data_size if args.data_size > 0 else 250000 - mazes_train, paths_train = maze.create_maze_data( - (4 * nb) // 5, + nb_train_samples, height=height, width=width, nb_walls=nb_walls, @@ -190,7 +199,7 @@ class TaskMaze(Task): self.nb_codes = self.train_input.max() + 1 mazes_test, paths_test = maze.create_maze_data( - nb // 5, + nb_test_samples, height=height, width=width, nb_walls=nb_walls, @@ -199,9 +208,11 @@ class TaskMaze(Task): mazes_test, paths_test = mazes_test.to(device), paths_test.to(device) self.test_input = self.map2seq(mazes_test, paths_test) - def batches(self, split="train"): + def batches(self, split="train", nb_to_use=-1): assert split in {"train", "test"} input = self.train_input if split == "train" else self.test_input + if nb_to_use > 0: + input = input[:nb_to_use] for batch in tqdm.tqdm( input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}" ): @@ -210,9 +221,9 @@ class TaskMaze(Task): def vocabulary_size(self): return self.nb_codes - def compute_error(self, model, split="train"): + def compute_error(self, model, split="train", nb_to_use=-1): nb_total, nb_correct = 0, 0 - for input in task.batches(split): + for input in task.batches(split, nb_to_use): result = input.clone() ar_mask = result.new_zeros(result.size()) ar_mask[:, self.height * self.width :] = 1 @@ -224,26 +235,36 @@ class TaskMaze(Task): return nb_total, nb_correct def produce_results(self, n_epoch, model): - train_nb_total, train_nb_correct = self.compute_error(model, "train") - log_string( - f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%" - ) - - test_nb_total, test_nb_correct = self.compute_error(model, "test") - log_string( - f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" - ) + with torch.autograd.no_grad(): + t = model.training + model.eval() + + train_nb_total, train_nb_correct = self.compute_error( + model, "train", nb_to_use=1000 + ) + log_string( + f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%" + ) + + test_nb_total, test_nb_correct = self.compute_error( + model, "test", nb_to_use=1000 + ) + log_string( + f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%" + ) + + input = self.test_input[:32] + result = input.clone() + ar_mask = result.new_zeros(result.size()) - input = self.test_input[:32] - result = input.clone() - ar_mask = result.new_zeros(result.size()) + ar_mask[:, self.height * self.width :] = 1 + masked_inplace_autoregression(model, self.batch_size, result, ar_mask) - ar_mask[:, self.height * self.width :] = 1 - masked_inplace_autoregression(model, self.batch_size, result, ar_mask) + mazes, paths = self.seq2map(input) + _, predicted_paths = self.seq2map(result) + maze.save_image(f"result_{n_epoch:04d}.png", mazes, paths, predicted_paths) - mazes, paths = self.seq2map(input) - _, predicted_paths = self.seq2map(result) - maze.save_image(f"result_{n_epoch:04d}.png", mazes, paths, predicted_paths) + model.train(t) ###################################################################### @@ -252,6 +273,8 @@ log_string(f"device {device}") task = TaskMaze( + nb_train_samples=args.nb_train_samples, + nb_test_samples=args.nb_test_samples, batch_size=args.batch_size, height=args.world_height, width=args.world_width,