From: Francois Fleuret Date: Fri, 7 Oct 2016 10:08:44 +0000 (+0200) Subject: Initial commit X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=566fc0bed5110585f5e17fe3afdb60c30ecb2cba;p=dyncnn.git Initial commit --- diff --git a/dyncnn.lua b/dyncnn.lua new file mode 100755 index 0000000..7cc5318 --- /dev/null +++ b/dyncnn.lua @@ -0,0 +1,750 @@ +#!/usr/bin/env luajit + +--[[ + + dyncnn is a deep-learning algorithm for the prediction of + interacting object dynamics + + Copyright (c) 2016 Idiap Research Institute, http://www.idiap.ch/ + Written by Francois Fleuret + + This file is part of dyncnn. + + dyncnn is free software: you can redistribute it and/or modify it + under the terms of the GNU General Public License version 3 as + published by the Free Software Foundation. + + dyncnn is distributed in the hope that it will be useful, but + WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + General Public License for more details. + + You should have received a copy of the GNU General Public License + along with dyncnn. If not, see . + +]]-- + +require 'torch' +require 'nn' +require 'optim' +require 'image' +require 'pl' + +---------------------------------------------------------------------- + +local opt = lapp[[ + --seed (default 1) random seed + + --learningStateFile (default '') + --dataDir (default './data/10p-mg/') + --resultDir (default '/tmp/dyncnn') + + --learningRate (default -1) + --momentum (default -1) + --nbEpochs (default -1) nb of epochs for the heavy setting + + --heavy use the heavy configuration + --nbChannels (default -1) nb of channels in the internal layers + --resultFreq (default 100) + + --noLog supress logging + + --exampleInternals (default -1) +]] + +---------------------------------------------------------------------- + +commandLine='' +for i = 0, #arg do + commandLine = commandLine .. ' \'' .. arg[i] .. '\'' +end + +---------------------------------------------------------------------- + +colors = sys.COLORS + +global = {} + +function logString(s, c) + if global.logFile then + global.logFile:write(s) + global.logFile:flush() + end + local c = c or colors.black + io.write(c .. s) + io.flush() +end + +function logCommand(c) + logString('[' .. c .. '] -> [' .. sys.execute(c) .. ']\n', colors.blue) +end + +logString('commandline: ' .. commandLine .. '\n', colors.blue) + +logCommand('mkdir -v -p ' .. opt.resultDir) + +if not opt.noLog then + global.logName = opt.resultDir .. '/log' + global.logFile = io.open(global.logName, 'a') +end + +---------------------------------------------------------------------- + +alreadyLoggedString = {} + +function logOnce(s) + local l = debug.getinfo(1).currentline + if not alreadyLoggedString[l] then + logString('@line ' .. l .. ' ' .. s, colors.red) + alreadyLoggedString[l] = s + end +end + +---------------------------------------------------------------------- + +nbThreads = os.getenv('TORCH_NB_THREADS') or 1 + +useGPU = os.getenv('TORCH_USE_GPU') == 'yes' + +for _, c in pairs({ 'date', + 'uname -a', + 'git log -1 --format=%H' + }) +do + logCommand(c) +end + +logString('useGPU is \'' .. tostring(useGPU) .. '\'.\n') + +logString('nbThreads is \'' .. nbThreads .. '\'.\n') + +---------------------------------------------------------------------- + +torch.setnumthreads(nbThreads) +torch.setdefaulttensortype('torch.FloatTensor') +torch.manualSeed(opt.seed) + +mynn = {} + +-- By default, mynn returns the entries from nn +local mt = {} +function mt.__index(table, key) + return nn[key] +end +setmetatable(mynn, mt) + +-- These are the tensors that can be kept on the CPU +mynn.SlowTensor = torch.Tensor +-- These are the tensors that should be moved to the GPU +mynn.FastTensor = torch.Tensor + +---------------------------------------------------------------------- + +if useGPU then + require 'cutorch' + require 'cunn' + require 'cudnn' + mynn.FastTensor = torch.CudaTensor + mynn.SpatialConvolution = cudnn.SpatialConvolution +end + +---------------------------------------------------------------------- + +config = {} +config.learningRate = 0.1 +config.momentum = 0 +config.batchSize = 128 +config.filterSize = 5 + +if opt.heavy then + + logString('Using the heavy configuration.\n') + config.nbChannels = 16 + config.nbBlocks = 4 + config.nbEpochs = 250 + config.nbEpochsInit = 100 + config.nbTrainSamples = 32768 + config.nbValidationSamples = 1024 + config.nbTestSamples = 1024 + +else + + logString('Using the light configuration.\n') + config.nbChannels = 2 + config.nbBlocks = 2 + config.nbEpochs = 6 + config.nbEpochsInit = 3 + config.nbTrainSamples = 1024 + config.nbValidationSamples = 1024 + config.nbTestSamples = 1024 + +end + +if opt.nbEpochs > 0 then + config.nbEpochs = opt.nbEpochs +end + +if opt.nbChannels > 0 then + config.nbChannels = opt.nbChannels +end + +if opt.learningRate > 0 then + config.learningRate = opt.learningRate +end + +if opt.momentum >= 0 then + config.momentum = opt.momentum +end + +---------------------------------------------------------------------- + +function tensorCensus(tensorType, model) + + local nb = {} + + local function countThings(m) + for k, i in pairs(m) do + if torch.type(i) == tensorType then + nb[k] = (nb[k] or 0) + i:nElement() + end + end + end + + model:apply(countThings) + + return nb + +end + +---------------------------------------------------------------------- + +function loadData(first, nb, name) + logString('Loading data `' .. name .. '\'.\n') + + local persistentFileName = string.format('%s/persistent_%d_%d.dat', + opt.dataDir, + first, + nb) + + -- This is at what framerate we work. It is greater than 1 so that + -- we can keep on disk sequences at a higher frame rate for videos + -- and explaining materials + + local frameRate = 4 + + local data + + if not path.exists(persistentFileName) then + logString(string.format('No persistent data structure, creating it (%d samples).\n', nb)) + local data = {} + data.name = name + data.nbSamples = nb + data.width = 64 + data.height = 64 + data.input = mynn.SlowTensor(data.nbSamples, 2, data.height, data.width) + data.target = mynn.SlowTensor(data.nbSamples, 1, data.height, data.width) + + for i = 1, data.nbSamples do + local n = i-1 + first-1 + local prefix = string.format('%s/%03d/dyn_%06d', + opt.dataDir, + math.floor(n/1000), n) + + function localLoad(filename, tensor) + local tmp + tmp = image.load(filename) + tmp:mul(-1.0):add(1.0) + tensor:copy(torch.max(tmp, 1)) + end + + localLoad(prefix .. '_world_000.png', data.input[i][1]) + localLoad(prefix .. '_grab.png', data.input[i][2]) + localLoad(string.format('%s_world_%03d.png', prefix, frameRate), + data.target[i][1]) + end + + data.persistentFileName = persistentFileName + + torch.save(persistentFileName, data) + end + + logCommand('sha256sum -b ' .. persistentFileName) + + data = torch.load(persistentFileName) + + return data +end + +---------------------------------------------------------------------- + +-- This function gets as input a list of tensors of arbitrary +-- dimensions each, but whose two last dimension stands for height x +-- width. It creates an image tensor (2d, one channel) with each +-- argument tensor unfolded per row. + +function imageFromTensors(bt, signed) + local gap = 1 + local tgap = -1 + local width = 0 + local height = gap + + for _, t in pairs(bt) do + -- print(t:size()) + local d = t:dim() + local h, w = t:size(d - 1), t:size(d) + local n = t:nElement() / (w * h) + width = math.max(width, gap + n * (gap + w)) + height = height + gap + tgap + gap + h + end + + local e = torch.Tensor(3, height, width):fill(1.0) + local y0 = 1 + gap + + for _, t in pairs(bt) do + local d = t:dim() + local h, w = t:size(d - 1), t:size(d) + local n = t:nElement() / (w * h) + local z = t:norm() / math.sqrt(t:nElement()) + + local x0 = 1 + gap + math.floor( (width - n * (w + gap)) /2 ) + local u = torch.Tensor(t:size()):copy(t):resize(n, h, w) + for m = 1, n do + + for c = 1, 3 do + for y = 0, h+1 do + e[c][y0 + y - 1][x0 - 1] = 0.0 + e[c][y0 + y - 1][x0 + w ] = 0.0 + end + for x = 0, w+1 do + e[c][y0 - 1][x0 + x - 1] = 0.0 + e[c][y0 + h ][x0 + x - 1] = 0.0 + end + end + + for y = 1, h do + for x = 1, w do + local v = u[m][y][x] / z + local r, g, b + if signed then + if v < -1 then + r, g, b = 0.0, 0.0, 1.0 + elseif v > 1 then + r, g, b = 1.0, 0.0, 0.0 + elseif v >= 0 then + r, g, b = 1.0, 1.0 - v, 1.0 - v + else + r, g, b = 1.0 + v, 1.0 + v, 1.0 + end + else + if v <= 0 then + r, g, b = 1.0, 1.0, 1.0 + elseif v > 1 then + r, g, b = 0.0, 0.0, 0.0 + else + r, g, b = 1.0 - v, 1.0 - v, 1.0 - v + end + end + e[1][y0 + y - 1][x0 + x - 1] = r + e[2][y0 + y - 1][x0 + x - 1] = g + e[3][y0 + y - 1][x0 + x - 1] = b + end + end + x0 = x0 + w + gap + end + y0 = y0 + h + gap + tgap + gap + end + + return e +end + +function collectAllOutputs(model, collection, which) + if torch.type(model) == 'nn.Sequential' then + for i = 1, #model.modules do + collectAllOutputs(model.modules[i], collection, which) + end + elseif not which or which[torch.type(model)] then + local t = torch.type(model.output) + if t == 'torch.FloatTensor' or t == 'torch.CudaTensor' then + collection.nb = collection.nb + 1 + collection.outputs[collection.nb] = model.output + end + end +end + +function saveInternalsImage(model, data, n) + -- Explicitely copy to keep input as a mynn.FastTensor + local input = mynn.FastTensor(1, 2, data.height, data.width) + input:copy(data.input:narrow(1, n, 1)) + + local output = model:forward(input) + + local collection = {} + collection.outputs = {} + collection.nb = 1 + collection.outputs[collection.nb] = input + + local which = {} + which['nn.ReLU'] = true + collectAllOutputs(model, collection, which) + + if collection.outputs[collection.nb] ~= model.output then + collection.nb = collection.nb + 1 + collection.outputs[collection.nb] = model.output + end + + local fileName = string.format('%s/internals_%s_%06d.png', + opt.resultDir, + data.name, n) + + logString('Saving ' .. fileName .. '\n') + image.save(fileName, imageFromTensors(collection.outputs)) +end + +---------------------------------------------------------------------- + +function saveResultImage(model, data, prefix, nbMax, highlight) + local l2criterion = nn.MSECriterion() + + if useGPU then + logString('Moving the criterion to the GPU.\n') + l2criterion:cuda() + end + + local prefix = prefix or 'result' + local result = torch.Tensor(data.height * 4 + 5, data.width + 2) + local input = mynn.FastTensor(1, 2, data.height, data.width) + local target = mynn.FastTensor(1, 1, data.height, data.width) + + local nbMax = nbMax or 50 + + local nb = math.min(nbMax, data.nbSamples) + + model:evaluate() + + logString(string.format('Write %d result images `%s\' for set `%s\' in %s.\n', + nb, prefix, data.name, + opt.resultDir)) + + for n = 1, nb do + + -- Explicitely copy to keep input as a mynn.FastTensor + input:copy(data.input:narrow(1, n, 1)) + target:copy(data.target:narrow(1, n, 1)) + + local output = model:forward(input) + + local loss = l2criterion:forward(output, target) + + result:fill(1.0) + + if highlight then + for i = 1, data.height do + for j = 1, data.width do + local v = data.input[n][1][i][j] + result[1 + i + 0 * (data.height + 1)][1 + j] = data.input[n][2][i][j] + result[1 + i + 1 * (data.height + 1)][1 + j] = v + local a = data.target[n][1][i][j] + local b = output[1][1][i][j] + result[1 + i + 2 * (data.height + 1)][1 + j] = + a * math.min(1, 0.1 + 2.0 * math.abs(a - v)) + result[1 + i + 3 * (data.height + 1)][1 + j] = + b * math.min(1, 0.1 + 2.0 * math.abs(b - v)) + end + end + else + for i = 1, data.height do + for j = 1, data.width do + result[1 + i + 0 * (data.height + 1)][1 + j] = data.input[n][2][i][j] + result[1 + i + 1 * (data.height + 1)][1 + j] = data.input[n][1][i][j] + result[1 + i + 2 * (data.height + 1)][1 + j] = data.target[n][1][i][j] + result[1 + i + 3 * (data.height + 1)][1 + j] = output[1][1][i][j] + end + end + end + + result:mul(-1.0):add(1.0) + + local fileName = string.format('%s/%s_%s_%06d.png', + opt.resultDir, + prefix, + data.name, n) + + logString(string.format('LOSS_ON_SAMPLE %f %s\n', loss, fileName)) + + image.save(fileName, result) + end +end + +---------------------------------------------------------------------- + +function createTower(filterSize, nbChannels, nbBlocks) + local tower = mynn.Sequential() + + for b = 1, nbBlocks do + local block = mynn.Sequential() + + block:add(mynn.SpatialConvolution(nbChannels, + nbChannels, + filterSize, filterSize, + 1, 1, + (filterSize - 1) / 2, (filterSize - 1) / 2)) + block:add(mynn.SpatialBatchNormalization(nbChannels)) + block:add(mynn.ReLU(true)) + + block:add(mynn.SpatialConvolution(nbChannels, + nbChannels, + filterSize, filterSize, + 1, 1, + (filterSize - 1) / 2, (filterSize - 1) / 2)) + + local parallel = mynn.ConcatTable() + parallel:add(block):add(mynn.Identity()) + + tower:add(parallel):add(mynn.CAddTable(true)) + + tower:add(mynn.SpatialBatchNormalization(nbChannels)) + tower:add(mynn.ReLU(true)) + end + + return tower +end + +function createModel(filterSize, nbChannels, nbBlocks) + local model = mynn.Sequential() + + model:add(mynn.SpatialConvolution(2, + nbChannels, + filterSize, filterSize, + 1, 1, + (filterSize - 1) / 2, (filterSize - 1) / 2)) + + model:add(mynn.SpatialBatchNormalization(nbChannels)) + model:add(mynn.ReLU(true)) + + local towerCode = createTower(filterSize, nbChannels, nbBlocks) + local towerDecode = createTower(filterSize, nbChannels, nbBlocks) + + model:add(towerCode) + model:add(towerDecode) + + -- Decode to a single channel, which is the final image + model:add(mynn.SpatialConvolution(nbChannels, + 1, + filterSize, filterSize, + 1, 1, + (filterSize - 1) / 2, (filterSize - 1) / 2)) + + return model +end + +---------------------------------------------------------------------- + +function fillBatch(data, first, nb, batch, permutation) + for k = 1, nb do + local i + if permutation then + i = permutation[first + k - 1] + else + i = first + k - 1 + end + batch.input[k] = data.input[i] + batch.target[k] = data.target[i] + end +end + +function trainModel(model, + trainData, validationData, nbEpochs, learningRate, + learningStateFile) + + local l2criterion = nn.MSECriterion() + local batchSize = config.batchSize + + if useGPU then + logString('Moving the criterion to the GPU.\n') + l2criterion:cuda() + end + + local batch = {} + batch.input = mynn.FastTensor(batchSize, 2, trainData.height, trainData.width) + batch.target = mynn.FastTensor(batchSize, 1, trainData.height, trainData.width) + + local startingEpoch = 1 + + if model.epoch then + startingEpoch = model.epoch + 1 + end + + if model.RNGState then + torch.setRNGState(model.RNGState) + end + + logString('Starting training.\n') + + local parameters, gradParameters = model:getParameters() + logString(string.format('model has %d parameters.\n', parameters:storage():size(1))) + + local averageTrainLoss, averageValidationLoss + local trainTime, validationTime + + local sgdState = { + learningRate = config.learningRate, + momentum = config.momentum, + learningRateDecay = 0 + } + + for e = startingEpoch, nbEpochs do + + model:training() + + local permutation = torch.randperm(trainData.nbSamples) + + local accLoss = 0.0 + local nbBatches = 0 + local startTime = sys.clock() + + for b = 1, trainData.nbSamples, batchSize do + + fillBatch(trainData, b, batchSize, batch, permutation) + + local opfunc = function(x) + -- Surprisingly copy() needs this check + if x ~= parameters then + parameters:copy(x) + end + + local output = model:forward(batch.input) + local loss = l2criterion:forward(output, batch.target) + + local dLossdOutput = l2criterion:backward(output, batch.target) + gradParameters:zero() + model:backward(batch.input, dLossdOutput) + + accLoss = accLoss + loss + nbBatches = nbBatches + 1 + + return loss, gradParameters + end + + optim.sgd(opfunc, parameters, sgdState) + + end + + trainTime = sys.clock() - startTime + averageTrainLoss = accLoss / nbBatches + + ---------------------------------------------------------------------- + -- Validation losses + do + model:evaluate() + + local accLoss = 0.0 + local nbBatches = 0 + local startTime = sys.clock() + + for b = 1, validationData.nbSamples, batchSize do + fillBatch(trainData, b, batchSize, batch) + local output = model:forward(batch.input) + accLoss = accLoss + l2criterion:forward(output, batch.target) + nbBatches = nbBatches + 1 + end + + validationTime = sys.clock() - startTime + averageValidationLoss = accLoss / nbBatches; + end + + logString(string.format('Epoch train %0.2fs (%0.2fms / sample), validation %0.2fs (%0.2fms / sample).\n', + trainTime, + 1000 * trainTime / trainData.nbSamples, + validationTime, + 1000 * validationTime / validationData.nbSamples)) + + logString(string.format('LOSS %d %f %f\n', e, averageTrainLoss, averageValidationLoss), + colors.green) + + ---------------------------------------------------------------------- + -- Save a persistent state so that we can restart from there + + if learningStateFile then + model.RNGState = torch.getRNGState() + model.epoch = e + model:clearState() + logString('Writing ' .. learningStateFile .. '.\n') + torch.save(learningStateFile, model) + end + + ---------------------------------------------------------------------- + -- Save a duplicate of the persistent state from time to time + + if opt.resultFreq > 0 and e%opt.resultFreq == 0 then + torch.save(string.format('%s/epoch_%05d_model', opt.resultDir, e), model) + saveResultImage(model, trainData) + saveResultImage(model, validationData) + end + + end + +end + +function createAndTrainModel(trainData, validationData) + + local model + + local learningStateFile = opt.learningStateFile + + if learningStateFile == '' then + learningStateFile = opt.resultDir .. '/learning.state' + end + + local gotlearningStateFile + + logString('Using the learning state file ' .. learningStateFile .. '\n') + + if pcall(function () model = torch.load(learningStateFile) end) then + + gotlearningStateFile = true + + else + + model = createModel(config.filterSize, config.nbChannels, config.nbBlocks) + + if useGPU then + logString('Moving the model to the GPU.\n') + model:cuda() + end + + end + + logString(tostring(model) .. '\n') + + if gotlearningStateFile then + logString(string.format('Found a learning state with %d epochs finished.\n', model.epoch), + colors.red) + end + + if opt.exampleInternals > 0 then + saveInternalsImage(model, validationData, opt.exampleInternals) + os.exit(0) + end + + trainModel(model, + trainData, validationData, + config.nbEpochs, config.learningRate, + learningStateFile) + + return model + +end + +for i, j in pairs(config) do + logString('config ' .. i .. ' = \'' .. j ..'\'\n') +end + +local trainData = loadData(1, config.nbTrainSamples, 'train') +local validationData = loadData(config.nbTrainSamples + 1, config.nbValidationSamples, 'validation') +local testData = loadData(config.nbTrainSamples + config.nbValidationSamples + 1, config.nbTestSamples, 'test') + +local model = createAndTrainModel(trainData, validationData) + +saveResultImage(model, trainData) +saveResultImage(model, validationData) +saveResultImage(model, testData, nil, testData.nbSamples)