From: Francois Fleuret Date: Wed, 1 Mar 2017 17:45:00 +0000 (+0100) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=4aed0ce274b7c0e379651c28e439375c821c047a;p=flatland.git Update. --- diff --git a/build.py b/build.py index cb77b38..9f03c37 100755 --- a/build.py +++ b/build.py @@ -3,19 +3,16 @@ import os from torch.utils.ffi import create_extension -this_file = os.path.dirname(__file__) - -print('__file__', __file__) +abs_path = os.path.dirname(os.path.abspath(__file__)) ffi = create_extension( '_ext.flatland', headers = [ 'flatland.h' ], sources = [ 'flatland.c' ], - extra_objects = [ '/home/fleuret/sources/python/flatland/flatland_generator.so' ], + extra_objects = [ abs_path + '/flatland_generator.so' ], libraries = [ ], library_dirs = [ ], define_macros = [ ], - relative_to=this_file, with_cuda = False ) diff --git a/flatland.c b/flatland.c index 13da6fd..71dee63 100644 --- a/flatland.c +++ b/flatland.c @@ -1,6 +1,3 @@ - -#include - /* Example of FFI extension I started from: @@ -17,38 +14,47 @@ */ +#include + #include "sequence_generator.h" -int generate_sequence(long nb_sequences, THByteTensor *output) { - long nb_images_per_sequence = 5; - long depth = 3; - long width = 64; - long height = 64; - long s; +THByteTensor *generate_sequence(long nb_sequences, long nb_images_per_sequence, long image_width, long image_height) { + long nb_channels = 3; unsigned char *a, *b; - int c, k, i, j, st0, st1, st2, st3, st4; + long s, c, k, i, j, st0, st1, st2, st3, st4; - THByteTensor_resize5d(output, nb_sequences, nb_images_per_sequence, depth, height, width); + THLongStorage *size = THLongStorage_newWithSize(5); + size->data[0] = nb_sequences; + size->data[1] = nb_images_per_sequence; + size->data[2] = nb_channels; + size->data[3] = image_height; + size->data[4] = image_width; - st0 = THByteTensor_stride(output, 0); - st1 = THByteTensor_stride(output, 1); - st2 = THByteTensor_stride(output, 2); - st3 = THByteTensor_stride(output, 3); - st4 = THByteTensor_stride(output, 4); + THByteTensor *result = THByteTensor_newWithSize(size, NULL); - a = - THByteTensor_storage(output)->data + THByteTensor_storageOffset(output); + THLongStorage_free(size); + + st0 = THByteTensor_stride(result, 0); + st1 = THByteTensor_stride(result, 1); + st2 = THByteTensor_stride(result, 2); + st3 = THByteTensor_stride(result, 3); + st4 = THByteTensor_stride(result, 4); + + unsigned char tmp_buffer[nb_images_per_sequence * nb_channels * image_width * image_height]; for(s = 0; s < nb_sequences; s++) { - unsigned char result[nb_images_per_sequence * depth * width * height]; - unsigned char *r = result; - fl_generate_sequences(1, nb_images_per_sequence, width, height, result); + a = + THByteTensor_storage(result)->data + THByteTensor_storageOffset(result) + s * st0; + + fl_generate_sequences(1, nb_images_per_sequence, image_width, image_height, tmp_buffer); + + unsigned char *r = tmp_buffer; for(k = 0; k < nb_images_per_sequence; k++) { - for(c = 0; c < depth; c++) { - for(i = 0; i < height; i++) { + for(c = 0; c < nb_channels; c++) { + for(i = 0; i < image_height; i++) { b = a - + s * st0 + k * st1 + c * st2 + i * st3; - for(j = 0; j < width; j++) { + + k * st1 + c * st2 + i * st3; + for(j = 0; j < image_width; j++) { *b = (unsigned char) (*r); r++; b += st4; @@ -58,5 +64,5 @@ int generate_sequence(long nb_sequences, THByteTensor *output) { } } - return 1; + return result; } diff --git a/flatland.h b/flatland.h index a0a255f..734add4 100644 --- a/flatland.h +++ b/flatland.h @@ -1,2 +1,4 @@ -int generate_sequence(long nb_sequences, THByteTensor *output); +THByteTensor *generate_sequence(long nb_sequences, + long nb_images_per_sequence, + long image_width, long image_height); diff --git a/test.py b/test.py index 314e03d..c6b6c48 100755 --- a/test.py +++ b/test.py @@ -4,6 +4,8 @@ import torch import torchvision from torchvision import datasets +from _ext import flatland + ###################################################################### def sequences_to_image(x): @@ -40,10 +42,6 @@ def sequences_to_image(x): ###################################################################### -from _ext import flatland - -x = torch.ByteTensor() - -flatland.generate_sequence(10, x) +x = flatland.generate_sequence(5, 3, 128, 96) sequences_to_image(x).save('sequences.png')