From: François Fleuret Date: Fri, 13 Oct 2023 14:55:44 +0000 (+0200) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=4aa7e109b4c712643cdddc2480b66d8799f71d3f;p=picoclvr.git Update. --- diff --git a/main.py b/main.py index cd37b94..d961301 100755 --- a/main.py +++ b/main.py @@ -33,7 +33,7 @@ parser.add_argument( "--task", type=str, default="twotargets", - help="byheart, learnop, guessop, twotargets, addition, picoclvr, mnist, maze, snake, stack, expr, rpl, grid", + help="byheart, learnop, guessop, twotargets, addition, picoclvr, mnist, maze, snake, stack, expr, rpl, grid, qmlp", ) parser.add_argument("--log_filename", type=str, default="train.log", help=" ") @@ -195,6 +195,12 @@ default_task_args = { "nb_train_samples": 250000, "nb_test_samples": 10000, }, + "qmlp": { + "model": "37M", + "batch_size": 10, + "nb_train_samples": 100000, + "nb_test_samples": 1000, + }, "guessop": { "model": "352M", "batch_size": 25, @@ -502,6 +508,16 @@ elif args.task == "grid": device=device, ) +elif args.task == "qmlp": + task = tasks.QMLP( + nb_train_samples=args.nb_train_samples, + nb_test_samples=args.nb_test_samples, + batch_size=args.batch_size, + result_dir=args.result_dir, + logger=log_string, + device=device, + ) + else: raise ValueError(f"Unknown task {args.task}") diff --git a/qmlp.py b/qmlp.py index a7defe4..572cde1 100755 --- a/qmlp.py +++ b/qmlp.py @@ -39,8 +39,6 @@ def dequantize(q, xmin, xmax): ###################################################################### - - def generate_sets_and_params( batch_nb_mlps, nb_samples, @@ -48,6 +46,7 @@ def generate_sets_and_params( nb_epochs, device=torch.device("cpu"), print_log=False, + save_as_examples=False, ): data_input = torch.zeros(batch_nb_mlps, 2 * nb_samples, 2, device=device) data_targets = torch.zeros( @@ -58,10 +57,11 @@ def generate_sets_and_params( i = (data_targets.float().mean(-1) - 0.5).abs() > 0.1 nb = i.sum() - nb_rec = 2 - support = torch.rand(nb, nb_rec, 2, 3, device=device) * 2 - 1 + nb_rec = 8 + nb_values = 2 # more increases the min-max gap + support = torch.rand(nb, nb_rec, 2, nb_values, device=device) * 2 - 1 support = support.sort(-1).values - support = support[:, :, :, torch.tensor([0, 2])].view(nb, nb_rec, 4) + support = support[:, :, :, torch.tensor([0, nb_values - 1])].view(nb, nb_rec, 4) x = torch.rand(nb, 2 * nb_samples, 2, device=device) * 2 - 1 y = ( @@ -91,10 +91,18 @@ def generate_sets_and_params( test_input = dequantize(q_test_input, -1, 1) test_targets = test_targets + if save_as_examples: + for k in range(q_train_input.size(0)): + with open(f"example_{k:04d}.dat", "w") as f: + for u, c in zip(train_input[k], train_targets[k]): + f.write(f"{c} {u[0].item()} {u[1].item()}\n") + hidden_dim = 32 w1 = torch.randn(batch_nb_mlps, hidden_dim, 2, device=device) / math.sqrt(2) b1 = torch.zeros(batch_nb_mlps, hidden_dim, device=device) - w2 = torch.randn(batch_nb_mlps, 2, hidden_dim, device=device) / math.sqrt(hidden_dim) + w2 = torch.randn(batch_nb_mlps, 2, hidden_dim, device=device) / math.sqrt( + hidden_dim + ) b2 = torch.zeros(batch_nb_mlps, 2, device=device) w1.requires_grad_() @@ -141,6 +149,22 @@ def generate_sets_and_params( # print(f"{k=} {acc_train_loss=} {train_error=}") + acc_test_loss = 0 + nb_test_errors = 0 + + for input, targets in zip( + test_input.split(batch_size, dim=1), test_targets.split(batch_size, dim=1) + ): + h = torch.einsum("mij,mnj->mni", w1, input) + b1[:, None, :] + h = F.relu(h) + output = torch.einsum("mij,mnj->mni", w2, h) + b2[:, None, :] + loss = F.cross_entropy(output.reshape(-1, output.size(-1)), targets.reshape(-1)) + acc_test_loss += loss.item() * input.size(0) + + wta = output.argmax(-1) + nb_test_errors += (wta != targets).long().sum(-1) + + test_error = nb_test_errors / test_input.size(1) q_params = torch.cat( [quantize(p.view(batch_nb_mlps, -1), -2, 2) for p in [w1, b1, w2, b2]], dim=1 ) @@ -151,21 +175,23 @@ def generate_sets_and_params( batch_nb_mlps, -1 ) - return q_train_set, q_test_set, q_params + return q_train_set, q_test_set, q_params, test_error ###################################################################### -def evaluate_q_params(q_params, q_set, batch_size=25, device=torch.device("cpu"), nb_mlps_per_batch=1024): - +def evaluate_q_params( + q_params, q_set, batch_size=25, device=torch.device("cpu"), nb_mlps_per_batch=1024, + save_as_examples=False, +): errors = [] nb_mlps = q_params.size(0) - for n in range(0,nb_mlps,nb_mlps_per_batch): - batch_nb_mlps = min(nb_mlps_per_batch,nb_mlps-n) - batch_q_params = q_params[n:n+batch_nb_mlps] - batch_q_set = q_set[n:n+batch_nb_mlps] + for n in range(0, nb_mlps, nb_mlps_per_batch): + batch_nb_mlps = min(nb_mlps_per_batch, nb_mlps - n) + batch_q_params = q_params[n : n + batch_nb_mlps] + batch_q_set = q_set[n : n + batch_nb_mlps] hidden_dim = 32 w1 = torch.empty(batch_nb_mlps, hidden_dim, 2, device=device) b1 = torch.empty(batch_nb_mlps, hidden_dim, device=device) @@ -176,9 +202,9 @@ def evaluate_q_params(q_params, q_set, batch_size=25, device=torch.device("cpu") k = 0 for p in [w1, b1, w2, b2]: print(f"{p.size()=}") - x = dequantize(batch_q_params[:, k : k + p.numel() // batch_nb_mlps], -2, 2).view( - p.size() - ) + x = dequantize( + batch_q_params[:, k : k + p.numel() // batch_nb_mlps], -2, 2 + ).view(p.size()) p.copy_(x) k += p.numel() // batch_nb_mlps @@ -200,7 +226,9 @@ def evaluate_q_params(q_params, q_set, batch_size=25, device=torch.device("cpu") h = torch.einsum("mij,mnj->mni", w1, input) + b1[:, None, :] h = F.relu(h) output = torch.einsum("mij,mnj->mni", w2, h) + b2[:, None, :] - loss = F.cross_entropy(output.reshape(-1, output.size(-1)), targets.reshape(-1)) + loss = F.cross_entropy( + output.reshape(-1, output.size(-1)), targets.reshape(-1) + ) acc_loss += loss.item() * input.size(0) wta = output.argmax(-1) nb_errors += (wta != targets).long().sum(-1) @@ -208,7 +236,6 @@ def evaluate_q_params(q_params, q_set, batch_size=25, device=torch.device("cpu") errors.append(nb_errors / data_input.size(1)) acc_loss = acc_loss / data_input.size(1) - return torch.cat(errors) @@ -223,39 +250,42 @@ def generate_sequence_and_test_set( device, nb_mlps_per_batch=1024, ): + seqs, q_test_sets, test_errors = [], [], [] - seqs, q_test_sets = [],[] - - for n in range(0,nb_mlps,nb_mlps_per_batch): - q_train_set, q_test_set, q_params = generate_sets_and_params( - batch_nb_mlps = min(nb_mlps_per_batch, nb_mlps - n), + for n in range(0, nb_mlps, nb_mlps_per_batch): + q_train_set, q_test_set, q_params, test_error = generate_sets_and_params( + batch_nb_mlps=min(nb_mlps_per_batch, nb_mlps - n), nb_samples=nb_samples, batch_size=batch_size, nb_epochs=nb_epochs, device=device, ) - seqs.append(torch.cat( - [ - q_train_set, - q_train_set.new_full( - ( - q_train_set.size(0), - 1, + seqs.append( + torch.cat( + [ + q_train_set, + q_train_set.new_full( + ( + q_train_set.size(0), + 1, + ), + nb_quantization_levels, ), - nb_quantization_levels, - ), - q_params, - ], - dim=-1, - )) + q_params, + ], + dim=-1, + ) + ) q_test_sets.append(q_test_set) + test_errors.append(test_error) seq = torch.cat(seqs) q_test_set = torch.cat(q_test_sets) + test_error = torch.cat(test_errors) - return seq, q_test_set + return seq, q_test_set, test_error ###################################################################### @@ -263,7 +293,19 @@ def generate_sequence_and_test_set( if __name__ == "__main__": import time - batch_nb_mlps, nb_samples = 128, 500 + batch_nb_mlps, nb_samples = 128, 2500 + + generate_sets_and_params( + batch_nb_mlps=10, + nb_samples=nb_samples, + batch_size=25, + nb_epochs=100, + device=torch.device("cpu"), + print_log=False, + save_as_examples=True, + ) + + exit(0) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") @@ -271,13 +313,13 @@ if __name__ == "__main__": data = [] - seq, q_test_set = generate_sequence_and_test_set( + seq, q_test_set, test_error = generate_sequence_and_test_set( nb_mlps=batch_nb_mlps, nb_samples=nb_samples, device=device, batch_size=25, nb_epochs=250, - nb_mlps_per_batch=17 + nb_mlps_per_batch=17, ) end_time = time.perf_counter() diff --git a/tasks.py b/tasks.py index 066f1bb..44599f7 100755 --- a/tasks.py +++ b/tasks.py @@ -1555,7 +1555,6 @@ import qmlp class QMLP(Task): - ###################### def __init__( @@ -1563,6 +1562,7 @@ class QMLP(Task): nb_train_samples, nb_test_samples, batch_size, + result_dir, logger=None, device=torch.device("cpu"), ): @@ -1577,19 +1577,25 @@ class QMLP(Task): f"generating {nb_train_samples+nb_test_samples} samples (can take some time)" ) - seq, q_test_set = generate_sequence_and_test_set( - nb_mlps=nb_train_samples+nb_test_samples, + seq, q_test_set, test_error = qmlp.generate_sequence_and_test_set( + nb_mlps=nb_train_samples + nb_test_samples, nb_samples=self.nb_samples_per_mlp, device=self.device, batch_size=64, nb_epochs=250, - nb_mlps_per_batch=1024 + nb_mlps_per_batch=1024, ) self.train_input = seq[:nb_train_samples] self.train_q_test_set = q_test_set[:nb_train_samples] self.test_input = seq[nb_train_samples:] self.test_q_test_set = q_test_set[nb_train_samples:] + self.ref_test_errors = test_error + + filename = os.path.join(result_dir, f"test_errors_ref.dat") + with open(filename, "w") as f: + for e in self.ref_test_errors: + f.write(f"{e}\n") self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1 @@ -1599,7 +1605,7 @@ class QMLP(Task): for batch in tqdm.tqdm( input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}" ): - yield self.trim(batch) + yield batch def vocabulary_size(self): return self.nb_codes @@ -1609,14 +1615,13 @@ class QMLP(Task): ): correct = self.test_input[:1000] result = correct.clone() - ar_mask = torch.arange(result.size(1)) > self.nb_samples_per_mlp * 3 + 1 + ar_mask = ( + torch.arange(result.size(1), device=result.device) + > self.nb_samples_per_mlp * 3 + 1 + ).long()[None, :] + ar_mask = ar_mask.expand_as(result) result *= 1 - ar_mask # paraaaaanoiaaaaaaa - logger(f"----------------------------------------------------------") - - for e in self.tensor2str(result[:10]): - logger(f"test_before {e}") - masked_inplace_autoregression( model, self.batch_size, @@ -1626,18 +1631,14 @@ class QMLP(Task): device=self.device, ) - logger(f"----------------------------------------------------------") - - for e in self.tensor2str(result[:10]): - logger(f"test_after {e}") - - logger(f"----------------------------------------------------------") - - q_train_set = result[:, : nb_samples * 3] - q_params = result[:, nb_samples * 3 + 1 :] - error_test = evaluate_q_params(q_params, q_test_set, nb_mlps_per_batch=17) + q_train_set = result[:, : self.nb_samples_per_mlp * 3] + q_params = result[:, self.nb_samples_per_mlp * 3 + 1 :] + error_test = qmlp.evaluate_q_params(q_params, self.test_q_test_set) - logger(f"{error_test=}") + filename = os.path.join(result_dir, f"test_errors_{n_epoch:04d}.dat") + with open(filename, "w") as f: + for e in error_test: + f.write(f"{e}\n") ######################################################################