From: François Fleuret Date: Thu, 26 Sep 2024 20:46:12 +0000 (+0200) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=4108962c2acdcb0f762d2485dbcf0e1e0f7e3ef3;p=culture.git Update. --- diff --git a/main.py b/main.py index 7af281c..d699bc6 100755 --- a/main.py +++ b/main.py @@ -509,16 +509,18 @@ def one_epoch(model, n_epoch, c_quizzes, train=True, local_device=main_device): q_p, q_g = quizzes.to(local_device).chunk(2) - # Half of the samples train the prediction. We inject noise in all - # to avoid drift of the culture toward "finding waldo" type of - # complexity, and hints in half to allow dealing with hints when - # validating c quizzes + # Half of the samples are used to train the prediction. b_p = samples_for_prediction_imt(q_p) + # We inject noise in all to avoid drift of the culture toward + # "finding waldo" type of complexity b_p = add_input_noise_imt(b_p, args.proba_input_noise) - half = torch.rand(b_p.size(0)) < 0.5 + # And we add hints in half so that the models can deal with too + # complex quizzes + half = torch.rand(b_p.size(0), device=b_p.device) < 0.5 b_p[half] = add_hints_imt(b_p[half], args.proba_hints) - # The other half are denoising examples for the generation + # The other half are denoising examples to train the generative + # process. b_g = samples_for_generation_imt(q_g) imt_set = torch.cat([b_p, b_g]) diff --git a/world.py b/world.py new file mode 100755 index 0000000..3ab6944 --- /dev/null +++ b/world.py @@ -0,0 +1,790 @@ +#!/usr/bin/env python + +# Any copyright is dedicated to the Public Domain. +# https://creativecommons.org/publicdomain/zero/1.0/ + +# Written by Francois Fleuret + +import math, sys, tqdm, os, warnings, cairo, re + +import torch, torchvision + +from torch import nn +from torch.nn import functional as F + +###################################################################### + + +def text_img(height, width, text): + pixel_map = torch.full((height, width, 4), 255, dtype=torch.uint8) + + surface = cairo.ImageSurface.create_for_data( + pixel_map.numpy(), cairo.FORMAT_ARGB32, pixel_map.size(1), pixel_map.size(0) + ) + + ctx = cairo.Context(surface) + ctx.set_source_rgb(0, 0, 0) + ctx.set_font_size(16) + ctx.select_font_face("courier", cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL) + y = None + for line in text.split("\n"): + xbearing, ybearing, width, height, dx, dy = ctx.text_extents(line) + if y is None: + y = height * 1.5 + x = height * 0.5 + + ctx.move_to(x, y) + ctx.show_text(line) + y += height * 1.5 + + ctx.stroke() + + return pixel_map.permute(2, 0, 1)[None, :3].contiguous() + + +###################################################################### + +import problem + + +class Grids(problem.Problem): + grid_gray = 240 + thickness = 1 + background_gray = 240 + dots = False + + named_colors = [ + ("white", [background_gray, background_gray, background_gray]), + # ("white", [224, 224, 224]), + ("red", [255, 0, 0]), + ("green", [0, 160, 0]), + ("blue", [0, 0, 255]), + ("yellow", [255, 224, 0]), + ("cyan", [0, 255, 255]), + ("violet", [224, 128, 255]), + ("lightgreen", [160, 255, 160]), + ("brown", [165, 42, 42]), + ("lightblue", [192, 192, 255]), + ("gray", [128, 128, 128]), + ] + + def pure_noise(self, nb, device): + result = torch.randint( + self.nb_colors, (nb, 4 * (self.height * self.height)), device=device + ) + return result + + def trivial(self, quizzes): + S = self.height * self.width + assert self.check_order(quizzes, quad_order=("A", "f_A", "B", "f_B")) + a = quizzes.reshape(quizzes.size(0), 4, S + 1)[:, :, 1:] + return (a[:, 0] == a[:, 1]).min(dim=1).values | (a[:, 2] == a[:, 3]).min( + dim=1 + ).values + + def text2quiz(self, t): + chr2col = [ + (".", "white"), + ("r", "red"), + ("g", "green"), + ("b", "blue"), + ("y", "yellow"), + ("c", "cyan"), + ("v", "violet"), + ("l", "lightgreen"), + ("o", "brown"), + ("l", "lightblue"), + ("a", "gray"), + ] + + col2tok = dict([(c[0], n) for n, c in enumerate(self.named_colors)]) + chr2tok = dict([(c, col2tok[col]) for c, col in chr2col]) + + t = re.sub(r"#.*\n", "", t).strip() + l = t.replace("\n\n", ";").split(";") + + result = [] + + for t in l: + t = "".join(t.replace("\n", " ").strip().split(" ")) + t = torch.tensor([chr2tok[c] for c in t]) + t = t.reshape(10, 4, 10).permute(1, 0, 2).flatten(1) + t = torch.cat( + [ + torch.tensor( + [ + [self.token_A], + [self.token_f_A], + [self.token_B], + [self.token_f_B], + ] + ), + t, + ], + dim=1, + ) + result.append(t.flatten()[None, :]) + + return torch.cat(result, dim=0) + + def __init__( + self, + max_nb_cached_chunks=None, + chunk_size=None, + nb_threads=-1, + tasks=None, + ): + self.colors = torch.tensor([c for _, c in self.named_colors]) + + self.nb_colors = len(self.colors) + + self.nb_rec_max = 5 + self.rfree = torch.tensor([]) + + self.height = 12 + self.width = 20 + self.seq_len = 4 * self.height * self.width + + self.cache_rec_coo = {} + + all_tasks = [ + self.task_replace_color, + self.task_translate, + self.task_grow, + self.task_frame, + ] + + if tasks is None: + self.all_tasks = all_tasks + else: + self.all_tasks = [getattr(self, "task_" + t) for t in tasks.split(",")] + + super().__init__(max_nb_cached_chunks, chunk_size, nb_threads) + + ###################################################################### + + def vocabulary_size(self): + return self.nb_colors + + def grid2img(self, x, scale=15, grids=True): + m = torch.logical_and(x >= 0, x < self.nb_colors).long() + y = self.colors[x * m].permute(0, 3, 1, 2) + s = y.shape + y = y[:, :, :, None, :, None].expand(-1, -1, -1, scale, -1, scale) + y = y.reshape(s[0], s[1], s[2] * scale, s[3] * scale) + + if grids: + for t in range(self.thickness): + y[:, :, :, torch.arange(t, y.size(3), scale)] = self.grid_gray + y[:, :, torch.arange(t, y.size(2), scale), :] = self.grid_gray + if self.dots: + z = y.reshape( + y.size(0), + y.size(1), + y.size(2) // scale, + scale, + y.size(3) // scale, + scale, + ) + z = z[ + :, + :, + :, + scale // 2 - 1 : scale // 2 + 2, + :, + scale // 2 - 1 : scale // 2 + 2, + ] + zz = (z == self.background_gray).min(dim=1, keepdim=True).values + z[...] = zz * self.grid_gray + (zz == False) * z + + for n in range(m.size(0)): + for i in range(m.size(1)): + for j in range(m.size(2)): + if x[n, i, j] >= self.nb_colors: + # for k in range(3, scale - 2): + c = self.colors[x[n, i, j] - self.nb_colors][:, None, None] + # y[n, :, i * scale + k, j * scale + k] = c + # y[n, :, i * scale + k, j * scale + scale - k] = c + y[ + n, + :, + i * scale + 3 : i * scale + scale - 2, + j * scale + 3 : j * scale + scale - 2, + ] = c + + y = y[:, :, 1:, 1:] + + return y + + def add_frame(self, img, colors, thickness): + if thickness > 0: + result = img.new( + img.size(0), + img.size(1), + img.size(2) + 2 * thickness, + img.size(3) + 2 * thickness, + ) + + result[...] = colors[:, :, None, None] + result[:, :, thickness:-thickness, thickness:-thickness] = img + else: + result = img + + return result + + def save_quizzes_as_image( + self, + result_dir, + filename, + quizzes, + predicted_parts=None, + correct_parts=None, + comments=None, + comment_height=48, + nrow=4, + grids=True, + margin=12, + delta=False, + delta_highlight=False, + ): + quizzes = quizzes.to("cpu") + + S = self.height * self.width + + A, f_A, B, f_B = ( + quizzes.reshape(quizzes.size(0), 4, S) + .reshape(quizzes.size(0), 4, self.height, self.width) + .permute(1, 0, 2, 3) + ) + + frame, white, gray, green, red = torch.tensor( + [ + [self.grid_gray, self.grid_gray, self.grid_gray], + [255, 255, 255], + [200, 200, 200], + [0, 255, 0], + [255, 0, 0], + ], + device=quizzes.device, + ) + + thickness = self.thickness + + if delta: + u = (A != f_A).long() + img_delta_A = self.add_frame( + self.grid2img(u, grids=grids), frame[None, :], thickness=thickness + ) + img_delta_A = img_delta_A.min(dim=1, keepdim=True).values.expand_as( + img_delta_A + ) + u = (B != f_B).long() + img_delta_B = self.add_frame( + self.grid2img(u, grids=grids), frame[None, :], thickness=thickness + ) + img_delta_B = img_delta_B.min(dim=1, keepdim=True).values.expand_as( + img_delta_B + ) + + img_A = self.add_frame( + self.grid2img(A, grids=grids), frame[None, :], thickness=thickness + ) + img_f_A = self.add_frame( + self.grid2img(f_A, grids=grids), frame[None, :], thickness=thickness + ) + img_B = self.add_frame( + self.grid2img(B, grids=grids), frame[None, :], thickness=thickness + ) + img_f_B = self.add_frame( + self.grid2img(f_B, grids=grids), frame[None, :], thickness=thickness + ) + + if delta_highlight: + q = (img_B == img_f_B).min(dim=1, keepdim=True).values.long() + img_f_B = q * (img_f_B // 4 + 192) + (1 - q) * img_f_B + + # predicted_parts Nx4 + # correct_parts Nx4 + + if predicted_parts is None: + colors = white[None, None, :].expand(-1, 4, -1) + else: + predicted_parts = predicted_parts.to("cpu") + if correct_parts is None: + colors = ( + predicted_parts[:, :, None] * gray[None, None, :] + + (1 - predicted_parts[:, :, None]) * white[None, None, :] + ) + else: + correct_parts = correct_parts.to("cpu") + colors = ( + predicted_parts[:, :, None] + * ( + (correct_parts[:, :, None] == 1).long() * green[None, None, :] + + (correct_parts[:, :, None] == 0).long() * gray[None, None, :] + + (correct_parts[:, :, None] == -1).long() * red[None, None, :] + ) + + (1 - predicted_parts[:, :, None]) * white[None, None, :] + ) + + separation = 6 + + img_A = self.add_frame(img_A, colors[:, 0], thickness=separation) + img_f_A = self.add_frame(img_f_A, colors[:, 1], thickness=separation) + img_B = self.add_frame(img_B, colors[:, 2], thickness=separation) + img_f_B = self.add_frame(img_f_B, colors[:, 3], thickness=separation) + + img_A = self.add_frame(img_A, white[None, :], thickness=2) + img_f_A = self.add_frame(img_f_A, white[None, :], thickness=2) + img_B = self.add_frame(img_B, white[None, :], thickness=2) + img_f_B = self.add_frame(img_f_B, white[None, :], thickness=2) + + if delta: + img_delta_A = self.add_frame( + img_delta_A, colors[:, 0], thickness=separation + ) + img_delta_A = self.add_frame(img_delta_A, white[None, :], thickness=2) + img_delta_B = self.add_frame( + img_delta_B, colors[:, 0], thickness=separation + ) + img_delta_B = self.add_frame(img_delta_B, white[None, :], thickness=2) + img = torch.cat( + [img_A, img_f_A, img_delta_A, img_B, img_f_B, img_delta_B], dim=3 + ) + else: + img = torch.cat([img_A, img_f_A, img_B, img_f_B], dim=3) + + if comments is not None: + comment_img = [text_img(comment_height, img.size(3), t) for t in comments] + comment_img = torch.cat(comment_img, dim=0) + img = torch.cat([img, comment_img], dim=2) + + image_name = os.path.join(result_dir, filename) + + torchvision.utils.save_image( + img.float() / 255.0, + image_name, + nrow=nrow, + padding=margin * 4, + pad_value=1.0, + ) + + ###################################################################### + + # @torch.compile + def rec_coo( + self, + nb_rec, + min_height=3, + min_width=3, + surface_max=None, + ): + if surface_max is None: + surface_max = self.height * self.width // 4 + + signature = (nb_rec, min_height, min_width, surface_max) + + try: + return self.cache_rec_coo[signature].pop() + except IndexError: + pass + except KeyError: + pass + + N = 10000 + while True: + while True: + i = torch.randint(self.height, (N * nb_rec, 2)).sort(dim=-1).values + j = torch.randint(self.width, (N * nb_rec, 2)).sort(dim=-1).values + i[:, 1] += 1 + j[:, 1] += 1 + big_enough = ( + (i[:, 1] >= i[:, 0] + min_height) + & (j[:, 1] >= j[:, 0] + min_height) + & ((i[:, 1] - i[:, 0]) * (j[:, 1] - j[:, 0]) <= surface_max) + ) + + i, j = i[big_enough], j[big_enough] + + n = i.size(0) - i.size(0) % nb_rec + + if n > 0: + break + + i = i[:n].reshape(n // nb_rec, nb_rec, -1) + j = j[:n].reshape(n // nb_rec, nb_rec, -1) + + if i.size(0) > 1: + break + + self.cache_rec_coo[signature] = [ + [ + ( + i[n, k, 0].item(), + j[n, k, 0].item(), + i[n, k, 1].item(), + j[n, k, 1].item(), + ) + for k in range(nb_rec) + ] + for n in range(i.size(0)) + ] + + return self.cache_rec_coo[signature].pop() + + ###################################################################### + + def task_replace_color(self, A, f_A, B, f_B): + nb_rec = 3 + c = torch.randperm(self.nb_colors - 1)[: nb_rec + 1] + 1 + for X, f_X in [(A, f_A), (B, f_B)]: + r = self.rec_coo(nb_rec) + for n in range(nb_rec): + i1, j1, i2, j2 = r[n] + X[i1:i2, j1:j2] = c[n] + f_X[i1:i2, j1:j2] = c[n if n > 0 else -1] + + def task_translate(self, A, f_A, B, f_B): + while True: + di, dj = torch.randint(3, (2,)) - 1 + if di.abs() + dj.abs() > 0: + break + + nb_rec = 3 + c = torch.randperm(self.nb_colors - 1)[:nb_rec] + 1 + for X, f_X in [(A, f_A), (B, f_B)]: + while True: + r = self.rec_coo(nb_rec) + i1, j1, i2, j2 = r[nb_rec - 1] + if ( + i1 + di >= 0 + and i2 + di < X.size(0) + and j1 + dj >= 0 + and j2 + dj < X.size(1) + ): + break + + for n in range(nb_rec): + i1, j1, i2, j2 = r[n] + X[i1:i2, j1:j2] = c[n] + if n == nb_rec - 1: + f_X[i1 + di : i2 + di, j1 + dj : j2 + dj] = c[n] + else: + f_X[i1:i2, j1:j2] = c[n] + + def task_grow(self, A, f_A, B, f_B): + di, dj = torch.randint(2, (2,)) * 2 - 1 + nb_rec = 3 + c = torch.randperm(self.nb_colors - 1)[:nb_rec] + 1 + direction = torch.randint(2, (1,)).item() + for X, f_X in [(A, f_A), (B, f_B)]: + while True: + r = self.rec_coo(nb_rec) + i1, j1, i2, j2 = r[nb_rec - 1] + if i1 + 3 < i2 and j1 + 3 < j2: + break + + for n in range(nb_rec): + i1, j1, i2, j2 = r[n] + if n == nb_rec - 1: + if direction == 0: + X[i1 + 1 : i2 - 1, j1 + 1 : j2 - 1] = c[n] + f_X[i1:i2, j1:j2] = c[n] + else: + X[i1:i2, j1:j2] = c[n] + f_X[i1 + 1 : i2 - 1, j1 + 1 : j2 - 1] = c[n] + else: + X[i1:i2, j1:j2] = c[n] + f_X[i1:i2, j1:j2] = c[n] + + # @torch.compile + def task_frame(self, A, f_A, B, f_B): + nb_rec = 3 + c = torch.randperm(self.nb_colors - 1)[: nb_rec + 1] + 1 + for X, f_X in [(A, f_A), (B, f_B)]: + r = self.rec_coo(nb_rec) + for n in range(nb_rec): + i1, j1, i2, j2 = r[n] + X[i1:i2, j1:j2] = c[n] + if n == nb_rec - 1: + f_X[i1:i2, j1] = c[n] + f_X[i1:i2, j2 - 1] = c[n] + f_X[i1, j1:j2] = c[n] + f_X[i2 - 1, j1:j2] = c[n] + else: + f_X[i1:i2, j1:j2] = c[n] + + ###################################################################### + + def create_empty_quizzes(self, nb, quad_order=("A", "f_A", "B", "f_B")): + S = self.height * self.width + quizzes = torch.zeros(nb, 4 * (S + 1), dtype=torch.int64) + quizzes[:, 0 * (S + 1)] = self.l2tok[quad_order[0]] + quizzes[:, 1 * (S + 1)] = self.l2tok[quad_order[1]] + quizzes[:, 2 * (S + 1)] = self.l2tok[quad_order[2]] + quizzes[:, 3 * (S + 1)] = self.l2tok[quad_order[3]] + + return quizzes + + def generate_w_quizzes_(self, nb, tasks=None, progress_bar=False): + S = self.height * self.width + + if tasks is None: + tasks = self.all_tasks + + quizzes = torch.empty(nb, 4 * self.height * self.width, dtype=torch.int64) + + if progress_bar: + quizzes = tqdm.tqdm( + quizzes, + dynamic_ncols=True, + desc="world quizzes generation", + total=quizzes.size(0), + ) + + for quiz in quizzes: + q = quiz.reshape(4, self.height, self.width) + q[...] = 0 + A, f_A, B, f_B = q + task = tasks[torch.randint(len(tasks), (1,)).item()] + task(A, f_A, B, f_B) + + return quizzes + + def save_some_examples(self, result_dir, prefix=""): + nb, nrow = 256, 8 + for t in self.all_tasks: + print(t.__name__) + quizzes = self.generate_w_quizzes_(nb, tasks=[t]) + self.save_quizzes_as_image( + result_dir, prefix + t.__name__ + ".png", quizzes, nrow=nrow, delta=True + ) + + def detect_rectangles(self, q1, q2): + c = torch.arange(self.nb_colors) + I = torch.arange(self.height)[None, :, None] + J = torch.arange(self.width)[None, :, None] + + def corners(q): + q = q.reshape(-1, self.height, self.width) + a = (q[:, :, :, None] == c[None, None, None, :]).long() + mi = a.max(dim=2).values + i = mi * I + i1 = (i + (1 - mi) * q.size(1)).min(dim=1).values + i2 = (i + (1 - mi) * (-1)).max(dim=1).values + 1 + mj = a.max(dim=1).values + j = mj * J + j1 = (j + (1 - mj) * q.size(2)).min(dim=1).values + j2 = (j + (1 - mj) * (-1)).max(dim=1).values + 1 + m = ( + ((I > i1[:, None, :]) & (I < i2[:, None, :] - 1))[:, :, None, :] + & ((J > j1[:, None, :]) & (J < j2[:, None, :] - 1))[:, None, :, :] + ).long() + f = ((a * m).long().sum(dim=(1, 2)) > 0).long() + return i1, i2, j1, j2, f + + q1_i1, q1_i2, q1_j1, q1_j2, q1_f = corners(q1) + q2_i1, q2_i2, q2_j1, q2_j2, q2_f = corners(q2) + u1, u2 = 0, 0 + + for _ in range(10): + r1 = q.new_zeros(q1.size(0), self.height, self.width) + r2 = q.new_zeros(q1.size(0), self.height, self.width) + + m1 = ( + ((I >= q1_i1[:, None, :]) & (I < q1_i2[:, None, :]))[:, :, None, :] + & ((J >= q1_j1[:, None, :]) & (J < q1_j2[:, None, :]))[:, None, :, :] + ).long() + + f1 = ( + ( + ((I == q1_i1[:, None, :]) | (I == q1_i2[:, None, :] - 1))[ + :, :, None, : + ] + & ((J >= q1_j1[:, None, :]) & (J < q1_j2[:, None, :]))[ + :, None, :, : + ] + ) + | ( + ((I >= q1_i1[:, None, :]) & (I < q1_i2[:, None, :] - 1))[ + :, :, None, : + ] + & ((J == q1_j1[:, None, :]) | (J == q1_j2[:, None, :] - 1))[ + :, None, :, : + ] + ) + ).long() + + r2 = q.new_zeros(q2.size(0), self.height, self.width) + + m2 = ( + ((I >= q2_i1[:, None, :]) & (I < q2_i2[:, None, :]))[:, :, None, :] + & ((J >= q2_j1[:, None, :]) & (J < q2_j2[:, None, :]))[:, None, :, :] + ).long() + + f2 = ( + ( + ((I == q2_i1[:, None, :]) | (I == q2_i2[:, None, :] - 1))[ + :, :, None, : + ] + & ((J >= q2_j1[:, None, :]) & (J < q2_j2[:, None, :]))[ + :, None, :, : + ] + ) + | ( + ((I >= q2_i1[:, None, :]) & (I < q2_i2[:, None, :] - 1))[ + :, :, None, : + ] + & ((J == q2_j1[:, None, :]) | (J == q2_j2[:, None, :] - 1))[ + :, None, :, : + ] + ) + ).long() + + for c in torch.randperm(self.nb_colors - 1) + 1: + r1[...] = q1_f[:, None, None, c] * ( + m1[:, :, :, c] * c + (1 - m1[:, :, :, c]) * r1 + ) + (1 - q1_f[:, None, None, c]) * ( + f1[:, :, :, c] * c + (1 - f1[:, :, :, c]) * r1 + ) + + r2[...] = q2_f[:, None, None, c] * ( + m2[:, :, :, c] * c + (1 - m2[:, :, :, c]) * r2 + ) + (1 - q2_f[:, None, None, c]) * ( + f2[:, :, :, c] * c + (1 - f2[:, :, :, c]) * r2 + ) + + match = ( + (q1 == r1.flatten(1)).min(dim=1).values + & (q2 == r2.flatten(1)).min(dim=1).values + ).long()[:, None, None] + u1 = (1 - match) * u1 + match * r1 + u2 = (1 - match) * u2 + match * r2 + + return u1.flatten(1), u2.flatten(1) + + # o = F.one_hot(q * (1 - m)).sum(dim=1) + # print(o) + # print(o.sort(dim=1, descending=True)) + # c = N x nb_col x 4 + + +###################################################################### + +if __name__ == "__main__": + import time + + grids = Grids() + + nb, nrow = 64, 4 + nb_rows = 12 + + # c_quizzes = torch.load("/home/fleuret/state.pth")["train_c_quizzes"] + # c_quizzes = c_quizzes[torch.randperm(c_quizzes.size(0))[: nrow * nb_rows]] + + # grids.save_quizzes_as_image( + # "/tmp", + # "c_quizzes.png", + # c_quizzes, + # delta=True, + # nrow=nrow, + # margin=10, + # grids=False + # comments=[f"{t.__name__} #{k}" for k in range(w_quizzes.size(0))], + # ) + + w_quizzes = grids.generate_w_quizzes_( + 16, + tasks=[ + grids.task_replace_color, + grids.task_translate, + grids.task_grow, + grids.task_frame, + ], + ) + + q = w_quizzes.reshape(-1, 4, w_quizzes.size(1) // 4) + r = q.new_zeros(q.size()) + r[:, 0], r[:, 1] = grids.detect_rectangles(q[:, 0], q[:, 1]) + r[:, 2], r[:, 3] = grids.detect_rectangles(q[:, 2], q[:, 3]) + + grids.save_quizzes_as_image( + "/tmp", + "q.png", + q.flatten(1), + # delta=True, + nrow=nrow, + margin=10, + # grids=False + # comments=[f"{t.__name__} #{k}" for k in range(w_quizzes.size(0))], + ) + + grids.save_quizzes_as_image( + "/tmp", + "r.png", + r.flatten(1), + # delta=True, + nrow=nrow, + margin=10, + # grids=False + # comments=[f"{t.__name__} #{k}" for k in range(w_quizzes.size(0))], + ) + + exit(0) + + q = grids.text2quiz( + """ + +# the original + +vvvvaaaaa. rrrraaaaa. .......... .......... +vvvvaaaaa. rrrraaaaa. ...aaa.... ...aaa.... +vvvvaaaaa. rrrraaaaa. ...aaa.... ...aaa.... +vvvvaaaaa. rrrraaaaa. ...aaa.... ...aaa.... +....aaaaa. ....aaaaa. .vvvvv.... .rrrrr.... +.......... .......... .vvvvvvvvv .rrrrroooo +.......... .......... .vvvvvvvvv .rrrrroooo +....vvvvv. ....ooooo. .vvvvvvvvv .rrrrroooo +....vvvvv. ....ooooo. .vvvvvvvvv .rrrrroooo +....vvvvv. ....ooooo. .vvvvvvvvv .rrrrroooo + +vvvvaaaaa. rrrraaaaa. .......... .......... +vvvvaaaaa. rrrraaaaa. .......... .......... +vvvvaaaaa. rrrraaaaa. .......aaa .......aaa +vvvvaaaaa. rrrraaaaa. .......aaa .......aaa +....aaaaa. ....aaaaa. .vvvvv.aaa .rrrrr.aaa +.......... .......... .vvvvvvvvv .rrrrroooo +.......... .......... .vvvvvvvvv .rrrrroooo +....vvvvv. ....ooooo. .vvvvvvvvv .rrrrroooo +....vvvvv. ....ooooo. .vvvvvvvvv .rrrrroooo +....vvvvv. ....ooooo. .vvvvvvvvv .rrrrroooo + +# +# so what +# + +vvvv...... rrrr...... .......... .......... +vvvv...... rrrr...... .......... .......... +vvvv.aaaaa rrrr.aaaaa .......aaa .......aaa +vvvv.aaaaa rrrr.aaaaa .......aaa .......aaa +.....aaaaa .....aaaaa .vvvvv.aaa .rrrrr.aaa +.....aaaaa .....aaaaa .vvvvvvvvv .rrrrroooo +.....aaaaa .....aaaaa .vvvvvvvvv .rrrrroooo +....vvvvv. ....ooooo. .vvvvvvvvv .rrrrroooo +....vvvvv. ....ooooo. .vvvvvvvvv .rrrrroooo +....vvvvv. ....ooooo. .vvvvvvvvv .rrrrroooo + +vvvv...... rrrr...... .......... .......... +vvvv...... rrrr...... .......... .......... +vvvv.aaaaa rrrr.aaaaa .......aaa .......aaa +vvvv.aaaaa rrrr.aaaaa .......aaa .......aaa +.....aaaaa .....aaaaa .vvvvv.aaa .rrrrr.aaa +.....aaaaa .....aaaaa .vvvvvvvvv .rrrrroooo +.....aaaaa .....aaaaa .vvvvvvvvv .rrrrroooo +....vvvvv. ....ooooo. .vvvvvvvvv .rrrrroooo +....vvvvv. ....ooooo. .vvvvvvvvv .rrrrroooo +....vvvvv. ....ooooo. .vvvvvvvvv .rrrrroooo +""" + ) + + grids.save_quizzes_as_image("/tmp", "test.png", q, nrow=1, grids=False)