From: François Fleuret Date: Fri, 12 Jul 2024 10:40:27 +0000 (+0200) Subject: Update. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=3ba9d1e0d85d689c2bdea9d2d571c6e8851a55b5;p=culture.git Update. --- diff --git a/main.py b/main.py index fc55b9c..63819f2 100755 --- a/main.py +++ b/main.py @@ -24,14 +24,6 @@ import torch.multiprocessing as mp ###################################################################### -if torch.cuda.is_available(): - device = torch.device("cuda") - torch.backends.cuda.matmul.allow_tf32 = True -else: - device = torch.device("cpu") - -###################################################################### - parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) @@ -82,7 +74,7 @@ parser.add_argument("--problem", type=str, default="grids") parser.add_argument("--nb_threads", type=int, default=1) -parser.add_argument("--nb_gpus", type=int, default=1) +parser.add_argument("--gpus", type=str, default="all") parser.add_argument("--nb_gpts", type=int, default=5) @@ -92,6 +84,10 @@ parser.add_argument("--max_to_validate", type=int, default=None) parser.add_argument("--accuracy_to_make_c_quizzes", type=float, default=0.975) +parser.add_argument("--proba_understands", type=float, default=0.99) + +parser.add_argument("--proba_not_understands", type=float, default=0.5) + parser.add_argument("--generation_temperature", type=float, default=2.0) parser.add_argument("--dirty_debug", action="store_true", default=False) @@ -234,6 +230,19 @@ for n in vars(args): ###################################################################### +if args.gpus == "all": + gpus_idx = range(torch.cuda.device_count()) +else: + gpus_idx = [int(k) for k in args.gpus.split(",")] + +gpus = [torch.device(f"cuda:{n}") for n in gpus_idx] + +if torch.cuda.is_available(): + main_device = gpus[0] +else: + assert len(gpus) == 0 + main_device = torch.device("cpu") + if args.dirty_debug: args.nb_train_samples = 2500 args.nb_test_samples = 100 @@ -253,14 +262,14 @@ if args.problem == "sky": nb_birds=args.sky_nb_birds, nb_iterations=args.sky_nb_iterations, speed=args.sky_speed, - max_nb_cached_chunks=args.nb_gpus * args.nb_train_samples // 100, + max_nb_cached_chunks=len(gpus) * args.nb_train_samples // 100, chunk_size=100, nb_threads=args.nb_threads, ) back_accuracy = False elif args.problem == "grids": problem = grids.Grids( - max_nb_cached_chunks=args.nb_gpus * args.nb_train_samples // 100, + max_nb_cached_chunks=len(gpus) * args.nb_train_samples // 100, chunk_size=100, nb_threads=args.nb_threads, tasks=args.grids_tasks, @@ -279,12 +288,12 @@ quiz_machine = quiz_machine.QuizMachine( batch_size=args.physical_batch_size, result_dir=args.result_dir, logger=log_string, - device=device, + device=main_device, ) ###################################################################### -log_string(f"device {device}") +log_string(f"main_device {main_device} gpus {[ str(g) for g in gpus]}") vocabulary_size = quiz_machine.vocabulary_size() @@ -293,13 +302,7 @@ log_string(f"vocabulary_size {vocabulary_size}") ###################################################################### -###################################################################### - - -def run_tests(model, quiz_machine, deterministic_synthesis, local_device=None): - if local_device is None: - local_device = device - +def run_tests(model, quiz_machine, deterministic_synthesis, local_device=main_device): with torch.autograd.no_grad(): model.eval().to(local_device) @@ -330,10 +333,7 @@ def run_tests(model, quiz_machine, deterministic_synthesis, local_device=None): ) -def one_epoch(model, quiz_machine, local_device=None): - if local_device is None: - local_device = device - +def one_epoch(model, quiz_machine, local_device=main_device): optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate) model.to(local_device).train() @@ -369,7 +369,9 @@ def one_epoch(model, quiz_machine, local_device=None): def standard_validity(logproba): l = logproba.sort(dim=-1).values - return (l[:, 0] < math.log(0.5)) & (l[:, 1] > math.log(0.99)) + return (l[:, 0] < math.log(args.proba_not_understands)) & ( + l[:, 1] > math.log(args.proba_understands) + ) def valid_c_quizzes(recorded, criteria): @@ -459,7 +461,7 @@ for k in range(args.nb_gpts): nb_blocks=args.nb_blocks, causal=True, dropout=args.dropout, - ).to(device) + ).to(main_device) model.main_test_accuracy = 0.0 model.id = k @@ -558,15 +560,15 @@ for n_epoch in range(args.nb_epochs): ranked_models = sorted(models, key=lambda m: float(m.main_test_accuracy)) - weakest_models = ranked_models[: args.nb_gpus] + weakest_models = ranked_models[: len(gpus)] threads = [] - for gpu_id, model in enumerate(weakest_models): + for gpu, model in zip(gpus, weakest_models): log_string(f"training model {model.id}") t = threading.Thread( - target=one_epoch, daemon=True, args=(model, quiz_machine, f"cuda:{gpu_id}") + target=one_epoch, daemon=True, args=(model, quiz_machine, gpu) ) threads.append(t)