From: Francois Fleuret Date: Tue, 22 Nov 2016 09:33:42 +0000 (+0100) Subject: Cosmetics. X-Git-Url: https://ant.fleuret.org/cgi-bin/gitweb/gitweb.cgi?a=commitdiff_plain;h=39c30863654d44ce3d260f719b3b5b9e41dbd3c8;p=dyncnn.git Cosmetics. --- diff --git a/Makefile b/Makefile index 304f403..974c08c 100644 --- a/Makefile +++ b/Makefile @@ -25,8 +25,6 @@ else CXXFLAGS = -fPIC -Wall -g -O3 endif -LDFLAGS = -lz -ldl - CXXFLAGS += -I/usr/include/cairo -DCAIRO_SUPPORT LDFLAGS += -lcairo @@ -40,7 +38,7 @@ flatland: flatland.o misc.o \ universe.o \ polygon.o \ canvas.o canvas_cairo.o - $(CXX) $(CXXFLAGS) $(LDFLAGS) -lX11 -o $@ $^ + $(CXX) $(CXXFLAGS) $(LDFLAGS) -o $@ $^ Makefile.depend: *.h *.cc Makefile $(CC) $(CXXFLAGS) -M *.cc > Makefile.depend diff --git a/dyncnn.lua b/dyncnn.lua index 5362593..c050344 100755 --- a/dyncnn.lua +++ b/dyncnn.lua @@ -28,7 +28,6 @@ require 'torch' require 'nn' require 'optim' require 'image' -require 'pl' require 'img' @@ -41,7 +40,7 @@ end colors = sys.COLORS function printfc(c, f, ...) - printf(c .. string.format(f, unpack({...})) .. colors.black) + print(c .. string.format(f, unpack({...})) .. colors.black) end function logCommand(c) @@ -49,7 +48,7 @@ function logCommand(c) end ---------------------------------------------------------------------- --- Environment and command line arguments +-- Environment variables local defaultNbThreads = 1 local defaultUseGPU = false @@ -58,21 +57,21 @@ if os.getenv('TORCH_NB_THREADS') then defaultNbThreads = os.getenv('TORCH_NB_THREADS') print('Environment variable TORCH_NB_THREADS is set and equal to ' .. defaultNbThreads) else - print('Environment variable TORCH_NB_THREADS is not set') + print('Environment variable TORCH_NB_THREADS is not set, default is ' .. defaultNbThreads) end if os.getenv('TORCH_USE_GPU') then defaultUseGPU = os.getenv('TORCH_USE_GPU') == 'yes' print('Environment variable TORCH_USE_GPU is set and evaluated as ' .. tostring(defaultUseGPU)) else - print('Environment variable TORCH_USE_GPU is not set.') + print('Environment variable TORCH_USE_GPU is not set, default is ' .. tostring(defaultUseGPU)) end ---------------------------------------------------------------------- +-- Command line arguments local cmd = torch.CmdLine() -cmd:text('') cmd:text('General setup') cmd:option('-seed', 1, 'initial random seed') @@ -83,17 +82,24 @@ cmd:text('') cmd:text('Log') cmd:option('-resultFreq', 100, 'at which epoch frequency should we save result images') -cmd:option('-exampleInternals', -1, 'should we save inner activation images') +cmd:option('-exampleInternals', '', 'list of comma-separated indices for inner activation images') cmd:option('-noLog', false, 'should we prevent logging') cmd:option('-rundir', '', 'the directory for results') +cmd:option('-deltaImages', false, 'should we highlight the difference in result images') + +cmd:text('') +cmd:text('Network structure') + +cmd:option('-filterSize', 5) +cmd:option('-nbChannels', 16) +cmd:option('-nbBlocks', 8) cmd:text('') cmd:text('Training') -cmd:option('-nbEpochs', 1000, 'nb of epochs for the heavy setting') +cmd:option('-nbEpochs', 2000, 'nb of epochs for the heavy setting') cmd:option('-learningRate', 0.1, 'learning rate') cmd:option('-batchSize', 128, 'size of the mini-batches') -cmd:option('-filterSize', 5, 'convolution filter size') cmd:option('-nbTrainSamples', 32768) cmd:option('-nbValidationSamples', 1024) cmd:option('-nbTestSamples', 1024) @@ -103,12 +109,6 @@ cmd:text('Problem to solve') cmd:option('-dataDir', './data/10p-mg', 'data directory') -cmd:text('') -cmd:text('Network structure') - -cmd:option('-nbChannels', 16) -cmd:option('-nbBlocks', 8) - ------------------------------ -- Log and stuff @@ -260,6 +260,16 @@ end ---------------------------------------------------------------------- +function highlightImage(a, b) + if params.deltaImages then + local h = torch.csub(a, b):abs() + h:div(1/h:max()):mul(0.9):add(0.1) + return torch.cmul(a, h) + else + return a + end +end + function saveResultImage(model, data, nbMax) local criterion = nn.MSECriterion() @@ -294,40 +304,26 @@ function saveResultImage(model, data, nbMax) -- We use our magical img.lua to create the result images - local comp = { - { - { pad = 1, data.input[n][1] }, - { pad = 1, data.input[n][2] }, - { pad = 1, data.target[n][1] }, - { pad = 1, output[1][1] }, - } - } + local comp - --[[ - local comp = { + comp = { { vertical = true, { pad = 1, data.input[n][1] }, - { pad = 1, data.input[n][2] } - }, - torch.Tensor(4, 4):fill(1.0), - { - vertical = true, - { pad = 1, data.target[n][1] }, - { pad = 1, output[1][1] }, - { pad = 1, torch.csub(data.target[n][1], output[1][1]):abs() } + { pad = 1, data.input[n][2] }, + { pad = 1, highlightImage(data.target[n][1], data.input[n][1]) }, + { pad = 1, highlightImage(output[1][1], data.input[n][1]) }, } } - ]]-- -local result = combineImages(1.0, comp) + local result = combineImages(1.0, comp) -result:mul(-1.0):add(1.0) + result:mul(-1.0):add(1.0) -local fileName = string.format('result_%s_%06d.png', data.name, n) -image.save(params.rundir .. '/' .. fileName, result) -lossFile:write(string.format('%f %s\n', loss, fileName)) -end + local fileName = string.format('result_%s_%06d.png', data.name, n) + image.save(params.rundir .. '/' .. fileName, result) + lossFile:write(string.format('%f %s\n', loss, fileName)) + end end ---------------------------------------------------------------------- @@ -434,14 +430,14 @@ function fillBatch(data, first, batch, permutation) end end -function trainModel(model, trainData, validationData) +function trainModel(model, trainSet, validationSet) local criterion = nn.MSECriterion() local batchSize = params.batchSize local batch = {} - batch.input = mynn.FastTensor(batchSize, 2, trainData.height, trainData.width) - batch.target = mynn.FastTensor(batchSize, 1, trainData.height, trainData.width) + batch.input = mynn.FastTensor(batchSize, 2, trainSet.height, trainSet.width) + batch.target = mynn.FastTensor(batchSize, 1, trainSet.height, trainSet.width) local startingEpoch = 1 @@ -450,6 +446,7 @@ function trainModel(model, trainData, validationData) end if model.RNGState then + printfc(colors.red, 'Using the RNG state from the loaded model.') torch.setRNGState(model.RNGState) end @@ -479,15 +476,15 @@ function trainModel(model, trainData, validationData) model:training() - local permutation = torch.randperm(trainData.nbSamples) + local permutation = torch.randperm(trainSet.nbSamples) local accLoss = 0.0 local nbBatches = 0 local startTime = sys.clock() - for b = 1, trainData.nbSamples, batchSize do + for b = 1, trainSet.nbSamples, batchSize do - fillBatch(trainData, b, batch, permutation) + fillBatch(trainSet, b, batch, permutation) local opfunc = function(x) -- Surprisingly, copy() needs this check @@ -526,8 +523,8 @@ function trainModel(model, trainData, validationData) local nbBatches = 0 local startTime = sys.clock() - for b = 1, validationData.nbSamples, batchSize do - fillBatch(validationData, b, batch) + for b = 1, validationSet.nbSamples, batchSize do + fillBatch(validationSet, b, batch) local output = model:forward(batch.input) accLoss = accLoss + criterion:forward(output, batch.target) nbBatches = nbBatches + 1 @@ -537,13 +534,24 @@ function trainModel(model, trainData, validationData) averageValidationLoss = accLoss / nbBatches; end - printf('Epoch train %0.2fs (%0.2fms / sample), validation %0.2fs (%0.2fms / sample).', - trainTime, - 1000 * trainTime / trainData.nbSamples, - validationTime, - 1000 * validationTime / validationData.nbSamples) + ---------------------------------------------------------------------- + + printfc(colors.green, + + 'epoch %d acc_train_loss %f validation_loss %f [train %.02fs total %.02fms / sample, validation %.02fs total %.02fms / sample]', + + e, - printfc(colors.green, 'LOSS %d %f %f', e, averageTrainLoss, averageValidationLoss) + averageTrainLoss, + + averageValidationLoss, + + trainTime, + 1000 * trainTime / trainSet.nbSamples, + + validationTime, + 1000 * validationTime / validationSet.nbSamples + ) ---------------------------------------------------------------------- -- Save a persistent state so that we can restart from there @@ -558,15 +566,15 @@ function trainModel(model, trainData, validationData) if params.resultFreq > 0 and e%params.resultFreq == 0 then torch.save(string.format('%s/model_%04d.t7', params.rundir, e), model) - saveResultImage(model, trainData) - saveResultImage(model, validationData) + saveResultImage(model, trainSet) + saveResultImage(model, validationSet) end end end -function createAndTrainModel(trainData, validationData) +function createAndTrainModel(trainSet, validationSet) -- Load the current training state, or create a new model from -- scratch @@ -574,23 +582,25 @@ function createAndTrainModel(trainData, validationData) if pcall(function () model = torch.load(params.rundir .. '/model_last.t7') end) then printfc(colors.red, - 'Found a learning state with %d epochs finished, starting from there.', + 'Found a model with %d epochs completed, starting from there.', model.epoch) - if params.exampleInternals > 0 then - saveInternalsImage(model, validationData, params.exampleInternals) + if params.exampleInternals ~= '' then + for _, i in ipairs(string.split(params.exampleInternals, ',')) do + saveInternalsImage(model, validationSet, tonumber(i)) + end os.exit(0) end else - model = createModel(trainData.width, trainData.height, + model = createModel(trainSet.width, trainSet.height, params.filterSize, params.nbChannels, params.nbBlocks) end - trainModel(model, trainData, validationData) + trainModel(model, trainSet, validationSet) return model @@ -608,25 +618,25 @@ do logCommand(c) end -local trainData = loadData(1, - params.nbTrainSamples, 'train') +local trainSet = loadData(1, + params.nbTrainSamples, 'train') -local validationData = loadData(params.nbTrainSamples + 1, - params.nbValidationSamples, 'validation') +local validationSet = loadData(params.nbTrainSamples + 1, + params.nbValidationSamples, 'validation') -local model = createAndTrainModel(trainData, validationData) +local model = createAndTrainModel(trainSet, validationSet) ---------------------------------------------------------------------- -- Test -local testData = loadData(params.nbTrainSamples + params.nbValidationSamples + 1, - params.nbTestSamples, 'test') +local testSet = loadData(params.nbTrainSamples + params.nbValidationSamples + 1, + params.nbTestSamples, 'test') if params.useGPU then print('Moving the model and criterion to the GPU.') model:cuda() end -saveResultImage(model, trainData) -saveResultImage(model, validationData) -saveResultImage(model, testData, 1024) +saveResultImage(model, trainSet) +saveResultImage(model, validationSet) +saveResultImage(model, testSet, 1024) diff --git a/flatland.cc b/flatland.cc index 3a59e88..75e9862 100644 --- a/flatland.cc +++ b/flatland.cc @@ -82,7 +82,6 @@ int main(int argc, char **argv) { const scalar_t world_width = 400; const scalar_t world_height = 400; const scalar_t scaling = 0.16; // So that 400 * 0.16 = 64 - const scalar_t shape_size = 80; const scalar_t dt = 0.1; const int nb_iterations_per_steps = 5; @@ -96,7 +95,8 @@ int main(int argc, char **argv) { int every_nth = 4; int nb_frames = 5; - int multi_grasp = 0; + int random_grasp = 0; + int random_shape_size = 0; int nb_shapes = 1; char data_dir[1024] = "/tmp/"; int multi_images = 0; @@ -134,8 +134,13 @@ int main(int argc, char **argv) { i++; } - else if(strcmp(argv[i], "--multi_grasp") == 0) { - multi_grasp = 1; + else if(strcmp(argv[i], "--random_grasp") == 0) { + random_grasp = 1; + i++; + } + + else if(strcmp(argv[i], "--random_shape_size") == 0) { + random_shape_size = 1; i++; } @@ -203,7 +208,7 @@ int main(int argc, char **argv) { scalar_t grab_start_x, grab_start_y; - if(multi_grasp) { + if(random_grasp) { grab_start_x = world_width * (0.1 + 0.8 * drand48()); grab_start_y = world_height * (0.1 + 0.8 * drand48()); } else { @@ -229,6 +234,14 @@ int main(int argc, char **argv) { nb_attempts = 0; + scalar_t shape_size; + + if(random_shape_size) { + shape_size = 40 + 80 * drand48(); + } else { + shape_size = 80; + } + do { scalar_t x[] = { - shape_size * 0.4, + shape_size * 0.4, + shape_size * 0.4, - shape_size * 0.4 }; diff --git a/run.sh b/run.sh index fe041f2..7ccfbb6 100755 --- a/run.sh +++ b/run.sh @@ -27,55 +27,32 @@ set -o pipefail [[ "${TORCH_NB_THREADS}" ]] || echo "You can set \$TORCH_NB_THREADS to the proper value (default 1)." [[ "${TORCH_USE_GPU}" ]] || echo "You can set \$TORCH_USE_GPU to 'yes' or 'no' (default 'no')." -[[ "${DYNCNN_DATA_DIR}" ]] || DYNCNN_DATA_DIR="./data/10p-mg" +[[ "${DYNCNN_DATA_DIR}" ]] || DYNCNN_DATA_DIR="./data/10p-mg" [[ "${DYNCNN_RUNDIR}" ]] || DYNCNN_RUNDIR="./results" -###################################################################### -# Create the data-set if the directory does not exist - if [[ ! -d "${DYNCNN_DATA_DIR}" ]]; then - cat <